Full Site - : mixed pb free with pb (Page 6 of 44)

Balver Zinn Group’s Area Sales Manager to Present at IPC Standard Workshop in Russia

Industry News | 2014-08-25 21:13:55.0

The Balver Zinn Group announces that Han Raetsen, Area Sales & Support Manager, will present at the IPC Standard and Electronic Manufacturing workshop and seminar. Raetsen will present, "Mixed Technology: The impact of using a SnPb soldering material in combination with Pb-free components", and "Reliability of Fluxes in Selective Soldering Applications."

Cobar Solder Products Inc.

Indium Corporation to Feature WEEE/RoHS Compliant Materials at Productronica

Industry News | 2005-10-20 11:39:06.0

Indium Corporation will be exhibiting its Suite of Pb-Free Electronics Assembly Materials for WEEE and RoHS compliance at the Productronica show in Munich, Germany on November 15-18, 2006.

Indium Corporation

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

Vitronics 6622CC  Wave soldering machine (2001)(Pb Free)

Vitronics 6622CC Wave soldering machine (2001)(Pb Free)

Used SMT Equipment | Soldering - Reflow

Vitronics 6622CC (Pb Free) Wave Soldering Machine Brand: Vitronics Model: 6622CC Vintage: 2001 Serial Number: 0103652201 LEADFREE unit Configured with Main Wave and Chip Wave Basic system according to General Specification (GS 235) CONTRO

Tekmart International Inc.

Heller Heller 1912EXL Reflow Oven  Pb Free

Heller Heller 1912EXL Reflow Oven Pb Free

Used SMT Equipment | Soldering - Reflow

Configuration ● Water cooled for superior cooling performance (includes chiller) ● edge/mesh conveyance ● left to right transfer ● flux management system ● Pure Forced Convection Heating ● Advanced Windows Operating system with Data Logging.

Capital Equipment Exchange

The Effect of Pb Mixing Levels on Solder Joint Reliability and Failure Mode of Backward Compatible, High Density Ball Grid Array Assemblies

Technical Library | 2015-01-08 17:26:59.0

Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern

Sanmina-SCI

Heller 1088HAC

Heller 1088HAC

Used SMT Equipment | Soldering - Reflow

  Heller 1088HAC 4-zone computer controlled convection reflow oven w/ mesh belt, PC, manuals and some frames for double sided boards and spare parts are included. Unit was used lightly in PB free environment. Would be ideal for a area that needs sm

Scientific Devices Exchange LLC. DBA SD Exchange

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Pb-free solders: Comparison of different geometrical models in calculating of enthalpy of mixing of In-Sn-Zn ternary system.

Technical Library | 2014-05-22 17:10:37.0

In this paper, the general solution model of Chou has been used to predict the integral enthalpies of mixing of liquid In-Sn-Zn ternary alloys in five selected sections, xIn/xSn = 0.15/0.85, 0.34/0.66, 0.50/0.50, 0.67/0.33 and 0.85/0.15. The other traditional models such as Kohler, Muggianu, Toop and Hillert are also included in calculations. Comparison with literature data was done and showed reasonable agreement with Toop and Hillert asymmetric models.

Université Mohammed V-Agdal


mixed pb free with pb searches for Companies, Equipment, Machines, Suppliers & Information