Technical Library: moisture (Page 2 of 5)

MSD in Electronic Assembly

Technical Library | 2023-09-23 22:25:12.0

Moisture trapped within components and PBs presents a serious problem during the fabrication and assembly process. Too much moisture can lead to board failures when it is turned to steam during the reflow process.

Acroname

MSD in Electronic Assembly

Technical Library | 2023-09-23 22:29:02.0

Moisture trapped within components and PBs presents a serious problem during the fabrication and assembly process. Too much moisture can lead to board failures when it is turned to steam during the reflow process.

Acroname

Moisture Absorption Properties of Laminates Used in Chip Packaging Applications

Technical Library | 2020-11-29 22:06:45.0

Plastic laminates are increasingly used as interposers within chip packaging applications. As a component within the package, the laminate is subjected to package moisture sensitivity testing. The moisture requirements of chip packaging laminates are related to ambient moisture absorption and thermal cycling. Printed wiring board (PWB) laminates, however, are gauged on properties relating to wet processes such as resist developing, copper etching, and pumice scrubbing. Consequently, printed wiring board moisture absorption test methods differ from chip packaging test conditions.

Isola Group

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

Drying and storage recommendation for printed circuit boards

Technical Library | 2024-01-08 18:44:00.0

Printed circuit boards, especially multilayer, flexible and rigid-flexible printed circuit boards, are extremely hygroscopic, i.e. they absorb and bind the moisture in the air. A dried polyimide film, for example, will have reached its moisture saturation level again after just a few hours.

ILFA GmbH

Moisture Measurements in PCBs and Impact of Design on Desorption Behaviour

Technical Library | 2018-09-21 10:12:53.0

Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.

National Physical Laboratory

Moisture Effect on Properties of Out-of-Autoclave Laminates with Different Void Content

Technical Library | 2020-12-16 18:38:49.0

Fabrication of large structures using out-of-autoclave prepreg materials will lead to a great amount of savings in manufacturing costs. In the out-of-autoclave processing method, the presence of voids inside the laminate has been an issue due to the lack of high pressure during manufacturing. This study aims primarily to observe the moisture absorption response of composite samples containing different levels of void. By changing the vacuum level inside the bag during the manufacturing process, three different unidirectional laminates at three levels of void have been manufactured. After immersing the samples in warm water at 60°C for about one year, the moisture absorption level was monitored and then diffusion coefficients were calculated using Fick's law. Results show that the moisture absorption coefficient changes by %8 within the experimental range of void contents. The mechanical behaviour of these laminates has been studied at four different moisture levels by performing dynamic mechanical analysis (DMA) and short beam shear tests. Empirical results indicate that, in general, interlaminar shear strength and glass transition temperature decrease by moisture build-up inside the samples. DiBenedetto equation is proposed to make a correlation between the moisture content and glass transition temperature.

Concordia University

Handling of Highly-Moisture Sensitive Components - An Analysis of Low-Humidity Containment and Baking Schedules

Technical Library | 2022-09-12 14:07:47.0

Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.

Alcatel-Lucent

Conformal Coating Why, What, When, and How

Technical Library | 2012-01-05 18:40:07.0

Conformal coating is applied to circuit cards to provide a dielectric layer on an electronic board. This layer functions as a membrane between the board and the environment. With this coating in place, the circuit card can withstand more moisture by incre

DfR Solutions

MOISTURE PHYSICS AND PROCESS OF DRYING OF PRINTED CIRCUIT BOARDS

Technical Library | 2024-01-08 21:31:01.0

The aim of this collection and interpretation is to develop an understanding of moisture in materials, especially in printed circuit boards, to know the effects on further processing and to be able to derive targeted corrective actions when moisture-related problems occur. In principle, the considerations are valid for all types of PCBs. Although these basic principles are of particular importance when working with flexible and rigid-flexible printed circuit boards; observing them can mean the difference between success or failure.

Würth Elektronik GmbH & Co. KG


moisture searches for Companies, Equipment, Machines, Suppliers & Information

Fluid Dispensing, Staking, TIM, Solder Paste

Training online, at your facility, or at one of our worldwide training centers"
Conductive Adhesive & Non-Conductive Adhesive Dispensing

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Pillarhouse USA for handload Selective Soldering Needs

Easily dispense fine pitch components with ±25µm positioning accuracy.
thru hole soldering and selective soldering needs

Software for SMT placement & AOI - Free Download.
High Throughput Reflow Oven

High Throughput Reflow Oven
Hot selling SMT spare parts and professional SMT machine solutions

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...