Technical Library: organizer (Page 1 of 5)

Fourier Transform Infrared Spectroscopy

Technical Library | 2019-07-05 09:33:05.0

Fourier Transform Infrared (FTIR) spectroscopy exists as one of the most powerful techniques for chemical identification and the most practical for “first step” analysis. Analytical instrumentation such as GC-MS and LC-MS are commonly used for identifying organic compounds. However, these techniques are costly and often require extensive set up time, method development, and sample alteration. Reliance upon FTIR as a robust and versatile tool can be based on its attributes of simplicity, speed, sensitivity, and affordability.

ACI Technologies, Inc.

Organic Optical Waveguide Fabrication in a Manufacturing Environment

Technical Library | 2010-10-28 01:27:38.0

Optical waveguides based on organic materials have been fabricated in a laboratory environment but the scaling and manufacturing processes needed to produce these waveguides have been scant. The volume production of low loss organic waveguides in a conven

i3 Electronics

Manufacturing Considerations When Implementing Voc-Free Flux Technology

Technical Library | 1999-05-07 11:44:26.0

In 1990 the United States Environmental Protection Agency Issued the Clean Air Act. The Clean Air Act and subsequent amendments are designed to limit the use of chemicals that contain volatile organic compounds (VOCs). The document goes into great detail setting limits for allowable VOC emissions for different industries.

Kester

Current Strategies for Mitigating Counterfeit Components

Technical Library | 2012-05-31 21:10:26.0

ProSkill Consulting and Training Group “Current Strategies for Mitigating Counterfeit Components” By: Rick Stanton - PRO-STD-001 Course Director/Corporate VP of Quality It’s well known that counterfeiting has been linked to organized c

ProSkill Consulting and Training Group (ProSkill CTG)

WHY test for Ionic Contamination?

Technical Library | 2023-04-17 21:37:32.0

Ionic contamination is a leading cause in the degradation and corrosion of electronic assemblies, leading to lifetime limitation and field failure (Fig. 1). Ionic residue comes from a variety of sources shown in Fig. 2 opposite: Examples of ionic contaminants: * Anions * Cations * Weak Organic Acid

Specialty Coating Systems

Quality Improvement and Enhanced Flexibility in Electronic Manufacturing through the Deployment of a modern Selective Soldering Process Technology

Technical Library | 2012-03-15 17:50:28.0

The competition in the EMS sector has considerably intensified over the last few years,. The enormous pressure to reduce production costs, which every service provider today has to face, frequently forces the organization to have a critical look at their

ASYS Group

Failure Analysis – Using Ion Chromatography And Ion Chromatography/Mass Spec (IC/MS)

Technical Library | 2021-04-29 01:43:34.0

Since the 1980s the electronics industry has utilized ion chromatography (IC) analysis to understand the relationship of ions, and some organics, to product reliability. From component and board fabrication to complete electronic assemblies and their end-use environment, IC analysis has been the de facto method for evaluating ionic cleanliness of electronic hardware.

Foresite Inc.

Large Thin Organic PTFE Substrates for Multichip Applications

Technical Library | 2007-06-13 13:44:10.0

Very high performance computer applications have created a demand for large organic substrates capable of interconnecting one or a few ASIC semiconductor devices with packaged memory devices. The electrical advantages offered by the use of a thin PTFE composite substrate were coupled with intrinsic mechanical advantages to create very high performance applications. The application development required interactions of design, fabrication, and new manufacturing technology to obtain rapid prototype production and allow a successful ensuing manufacturing ramp.

i3 Electronics

Electrical Performance of an Organic, Z-interconnect, Flip-Chip Substrate

Technical Library | 2007-10-25 18:39:07.0

More and more substrate designs require signals paths that can handle multi-gigahertz frequencies [1-3]. The challenges for organic substrates, in meeting these electrical requirements, include using high-speed, low-loss materials, manufacturing precise structures and making a reliable finished product. A new substrate technology is presented that addresses these challenges.

i3 Electronics

Joule Heating Effects on the Current Carrying Capacity of an Organic Substrate for Flip-Chip Applications

Technical Library | 2009-07-22 18:33:41.0

This paper deals with the thermal effects of joule heating in a high interconnect density, thin core, buildup, organic flip chip substrate. The 440 μm thick substrate consists of a 135 μm thick core with via density of about 200 μm. The typical feature sizes in the substrate are 50 micron diameter vias is the core/buildup layers and 12 micron thick metal planes. An experimental test vehicle is powered with current and the temperature rise was measured. A numerical model was used to simulate the temperature rise in the TV.

i3 Electronics

  1 2 3 4 5 Next

organizer searches for Companies, Equipment, Machines, Suppliers & Information

High Throughput Reflow Oven

Component Placement 101 Training Course
One stop service for all SMT and PCB needs

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Global manufacturing solutions provider

World's Best Reflow Oven Customizable for Unique Applications