Technical Library: non conductive epoxy (Page 1 of 3)

Conductive Adhesive Dispensing for Electronic Manufacturing

Technical Library | 2023-09-07 14:54:10.0

A global manufacturer of a broad line of electronic interconnect solutions worked with us to dispense conductive adhesive EpoTek H20E-FC. EpoTek H20E-FC is a two-component, electrically conductive, snap curing epoxy for photovoltaic thin film module stringing, semiconductor packaging and PCB circuit assembly. The primary goal was filling a rectangular cavity on a connector. The epoxy needed to fill the connector to the top of the walls in less than three seconds.

GPD Global

Mastering Precision: I.C.T's SMT Conformal Coating Valves

Technical Library | 2023-12-06 03:28:49.0

Mastering Precision: I.C.T's SMT Conformal Coating Valves Introduction Of SMT Conformal Coating Valves: In various industries, including electronics, lighting, energy, and life sciences, the SMT conformal coating process plays a critical role. Precision is key, and the choice of a SMT coating valve significantly influences application quality. This article explores I.C.T's SMT conformal coating valves, focusing on the C-0101, C-L101, PJ-01, PJ-01 (with plastic bucket), C-0100, D-0100, D-0300, and the W Series. C-0101 Water Curtain Spray SMT Conformal Coating Valves: The C-0101, a non-atomizing water curtain spray valve, excels with low-viscosity solvent materials. It ensures clean and precise edges in applications like conformal coatings, UV adhesives, backfilling, and volatile substances. C-L101 Rotary Water Curtain Spray Valve: Similar to the C-0101, the C-L101 suits low-viscosity solvent materials, offering a precise edge without splashing for various coatings. PJ-01 Injection Valve (Without Plastic Bucket): Designed for high-precision applications in electronics, lighting, energy, and life sciences, the PJ-01 excels in accurate dispensing and coating. It accommodates various materials, including red glue, liquids, and pastes. PJ-01 Injection Valve (With Plastic Bucket 30CC): The PJ-01, with a 30cc plastic bucket, maintains high precision for complex circuit board applications, offering precise dispensing for materials like red glue, liquids, and pastes. C-0100 Non-Rotating Film Valve: Different from pneumatic atomizing valves, the C-0100 provides precise edge definition without air pressure involvement. It addresses issues related to atomizing drift and fast-drying adhesives, allowing control over the film width. D-0100 Precision Valve: The D-0100, with a unique fluid-sealing structure driven by compressed air, minimizes seal replacement frequency. Suitable for various fluid dispensing, it handles UV adhesives, encapsulating materials, silicones, epoxies, and surface coatings. D-0300 Dispensing Valve: Tailored for precision fluid dispensing at low driving pressure, the D-0300 accommodates a range of materials, including acrylics, silicones, epoxies, and UV adhesives. It's ideal for applications where accuracy and consistency are crucial. W Series: Needle Design Atomization Valves: The W Series offers needle design valves leaving zero residue. Easy to clean without disassembly, they provide adjustable fluid and air pressure for various coating materials, ensuring excellent atomization effects. Analyzing The Options: When selecting a conformal coating valve, consider specific application requirements. C-0101 and C-L101 suit low-viscosity solvent materials, providing clean and precise edges. PJ-01, with or without a plastic bucket, offers high-precision dispensing for complex applications. C-0100 and D-0100 are versatile for various materials, and D-0300 excels in precision dispensing. The W Series offers residue-free needle design atomization valves. Choose based on material, precision, and coating needs. Integration with I.C.T's Conformal Coating Machines: Integral to I.C.T's Conformal Coating machines, these valves enable precise application tailored to specific requirements. Machines like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650 come equipped with a range of valve options catering to diverse production line needs. I.C.T SMT Coating Machine.png Conclusion: Selecting the right conformal coating valve is crucial for consistent, high-quality results. Evaluate options based on material, precision, and coating requirements. I.C.T provides tailored solutions for electronic assembly needs. For detailed insights into coating and dispensing machines, follow the provided link. Professional engineers are ready to assist in designing a production line that perfectly matches your requirements, ensuring optimal performance. Contact us for more information and tailored solutions to elevate your conformal coating processes.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

UV Laser PCB Depaneling Machine Improve Cutting Effect

Technical Library | 2021-09-02 08:17:07.0

We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com

Winsmart Electronic Co.,Ltd

Influence of Nanoparticles, Low Melting Point (LMP) Fillers, and Conducting Polymers on Electrical, Mechanical, and Reliability Performance of Micro-Filled Conducting Adhesives for Z-Axis Interconnections

Technical Library | 2007-11-01 17:16:07.0

This paper discusses micro-filled epoxy-based conducting adhesives modified with nanoparticles, conducting polymers, and low melting point (LMP) fillers for z-axis interconnections, especially as they relate to package level fabrication, integration,

i3 Electronics

Polyphenylene Ether Macromonomers. XI. Use in Non-Epoxy Printed Wiring Boards

Technical Library | 2012-11-01 20:54:49.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The continuous progression toward portable, high frequency microelectronic systems has placed high demands on material performance, notably low dielectric constants (Dk), low loss tangent (Df), low moisture uptake, and good thermal stability. Epoxy resins are the workhorses of the electronic industry. Significant performance enhancements have been obtained through the use of PPE telechelic macromonomers with epoxy resins. However, there is a ceiling on the performance obtainable from epoxy-based resins. Therefore, non-epoxy based dielectric materials are used to fulfill the need for higher performance.

SABIC

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

An Experimental Investigation of Fracture Toughness and Volume Resistivity of Symmetric Laminated Epoxy/ Glass Fiber/CNT multiscale composites

Technical Library | 2022-01-26 15:26:56.0

In this work an attempt is made to improve the fracture toughness and electrical conductivity of epoxy/glass fiber based laminates by the inclusion of carbon nanotube (CNT) fillers. The fiber orientation of the epoxy/ glass fiber (GF) fabric laminates was optimized based on estimation of mechanical properties. The carboxylic acid functionalized CNTs were incorporated into epoxy matrix by ultra-sonication method. The nano filled epoxy resin was used to prepare laminates with 30/45 GF fabric orientation. The CNT content was varied and its effect on the tensile properties was determined. The fracture toughness of multiphase composites was estimated using single edge notch bend (SENB) test. The presence of CNTs improved the fracture toughness by a crack bridging mechanism. The volume resistivity of multiphase composites was found to be superior to the conventional epoxy/CNT composite. The presence of glass fabric reduces the number of inter-tube contacts contributing to the reduction in volume resistivity.

Amrita University

Reliability Considerations of Electrically Conductive Adhesives.

Technical Library | 1999-07-21 09:00:55.0

Isotropic conductive adhesives are typically silver filled epoxy resins. Electronics assemblers have evaluated these materials for a variety of unique interconnect applications. The goal is a conductive polymer that exhibits similar reliability and performance to traditional solder while offering the benefits of a polymer structure such as low temperature processing and good thermal stability as well as the ability to bond a variety of substrates.

Henkel Electronic Materials

Printing and Curing of Conductive Ink Track on Curvature Substrate using Fluid Dispensing System and Oven

Technical Library | 2017-12-21 11:24:05.0

The present work concerns on the use of sensors to monitor the structural health of wind turbine . Conventionally the inspection was made using non-contact sensing during the turbine’s inoperable period hence loss occurred. A real -time monitoring system via embedded wireless sensor is preferred but the sensor could only be implanted using non-contact printing method due to most turbine blade s’ curved surface. Conductive ink associate d with non-contact printing method via fluid dispensing system are proposed since conductive inks are proven stretchable and fluid dispensing system enables printing on various substrates and works well with any materials...

University of Tun Hussein Onn

Whisker Growth In Tin Alloys On Glass-Epoxy Laminate Studied By Scanning ION Microscopy and Energy-Dispersive X-Ray Spectroscopy

Technical Library | 2013-08-22 14:28:58.0

Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.

The Institute of Electron Technology (ITE)

  1 2 3 Next

non conductive epoxy searches for Companies, Equipment, Machines, Suppliers & Information