Technical Library: ionic (Page 1 of 2)

Cleanliness/Corrosion Mitigation

Technical Library | 2019-09-27 09:14:41.0

One of the most critical factors in preventing corrosion from occurring in electronics is maintaining the state of cleanliness. This is not an easy feat to achieve. Corrosion is defined as the deterioration of a material or its properties due to a reaction of that material with its chemical environment. [1] So, to prevent corrosion from occurring, either the material or the chemical environment must be adjusted. Adjusting the material usually means application of a protective coating or replacing a more reactive material with a less reactive material. Adjusting the chemical environment usually means removing ionic species through cleaning, and removing moisture, usually with a conformal coating or hermetic package. Ionic species and moisture are problematic because they form an electrolyte which is able to conduct ions and electricity. Any metal that comes into contact with the electrolyte can begin to corrode.

ACI Technologies, Inc.

Cleaning No-Clean Fluxes Prior to Conformal Coating

Technical Library | 2020-03-09 10:50:17.0

A customer called the Helpline seeking advice for cleaning no-clean fluxes prior to applying a conformal coating. The customer's assemblies were manufactured with a no-clean rosin based solder paste (ROL0) and were cleaned with an isopropyl alcohol (IPA) wash. After cleaning, a white residue was sometimes found in areas with high paste concentrations and was interfering with the adhesion of the conformal coating (Figure 1). For conformal coatings to adhere properly, the printed circuit board (PCB) surface must be clean of fluxes and other residues. In addition, ionic contamination left by flux residues can lead to corrosion and dendrite growth, two common causes of electronic opens and shorts. Other residues can lead to unwanted impedance and physical interference with moving parts.

ACI Technologies, Inc.

WHY test for Ionic Contamination?

Technical Library | 2023-04-17 21:37:32.0

Ionic contamination is a leading cause in the degradation and corrosion of electronic assemblies, leading to lifetime limitation and field failure (Fig. 1). Ionic residue comes from a variety of sources shown in Fig. 2 opposite: Examples of ionic contaminants: * Anions * Cations * Weak Organic Acid

Specialty Coating Systems

The Relationship Between Cleanliness and Reliability/Durability

Technical Library | 2023-04-17 21:25:52.0

Outline/Agenda * Introduction of Ionics and ROSE * Evolution in technology * Rev H in the IPC-J-STD-001 * Real World Case Study * Conclusions

KYZEN Corporation

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation

Process Control of Ionic Contamination Achieving 6-Sigma Criteria in The Assembly of Electronic Circuits

Technical Library | 2018-11-29 13:43:54.0

Ionic contamination testing as a process control tool a newly developed testing protocol based on IPC-TM 650 2.3.25, was established to enable monitoring of ionic contamination within series production. The testing procedure was successfully implemented within the production of high reliability, safety critical electronic circuits, involving multiple production sites around the world. I will be shown in this paper that the test protocol is capable for meeting Six-Sigma-Criteria.

Robert Bosch LLC Automotive Electronics Division

How Clean is Clean Enough – At What Level Does Each of The Individual Contaminates Cause Leakage and Corrosion Failures in SIR?

Technical Library | 2016-09-08 16:27:49.0

In this investigation a test matrix was completed utilizing 900 electrodes (small circuit board with parallel copper traces on FR-4 with LPI soldermask at 6, 10 and 50 mil spacing): 12 ionic contaminants were applied in five concentrations to three different spaced electrodes with five replicas each (three different bare copper trace spacing / five replications of each with five levels of ionic concentration). The investigation was to assess the electrical response under controlled heat and humidity conditions of the known applied contamination to electrodes, using the IPC SIR (surface insulation resistance) J-STD 001 limits and determine at what level of contamination and spacing the ionic / organic residue has a failing effect on SIR.

Foresite Inc.

Failure Analysis – Using Ion Chromatography And Ion Chromatography/Mass Spec (IC/MS)

Technical Library | 2021-04-29 01:43:34.0

Since the 1980s the electronics industry has utilized ion chromatography (IC) analysis to understand the relationship of ions, and some organics, to product reliability. From component and board fabrication to complete electronic assemblies and their end-use environment, IC analysis has been the de facto method for evaluating ionic cleanliness of electronic hardware.

Foresite Inc.

Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for post soldered PCBA

Technical Library | 2023-04-17 21:17:59.0

The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.

Jabil Circuit, Inc.

Characterization, Prevention and Removal of Particulate Matter on Printed Circuit Boards

Technical Library | 2016-12-22 16:44:04.0

Particulate matter contamination is known to become wet and therefore ionically conductive and corrosive if the humidity in the environment rises above the deliquescence relative humidity (DRH) of the particulate matter. In wet condition, particulate matter can electrically bridge closely spaced features on printed circuit boards (PCBs), leading to their electrical failure. (...) The objective of this paper is to develop and describe a practical, routine means of measuring the DRH of minute quantities of particulate matter (1 mg or less) found on PCBs.

IBM Corporation

  1 2 Next

ionic searches for Companies, Equipment, Machines, Suppliers & Information