Technical Library: finish rohs (Page 1 of 1)

Effects of Tin Whisker Formation on Nanocrystalline Copper

Technical Library | 2023-02-13 19:23:18.0

Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.

Johns Hopkins Applied Physics Laboratory

Extreme Long Term Printed Circuit Board Surface Finish Solderability Assessment

Technical Library | 2021-01-28 01:55:00.0

Printed circuit board surface finishes are a topic of constant discussion as environmental influences, such as the Restriction of Hazardous Substances (RoHS) Directive or technology challenges, such as flip chip and 01005 passive components, initiate technology changes. These factors drive the need for greater control of processing characteristics like coplanarity and solderability, which influence the selection of surface finishes and impact costs as well as process robustness and integrity. The ideal printed circuit board finish would have good solderability, long shelf life, ease of fabrication/processing, robust environmental performance and provide dual soldering/wirebonding capabilities; unfortunately no single industry surface finish possesses all of these traits. The selection of a printed circuit board surface finish is ultimately a series of compromises for a given application.

Solderability Testing and Solutions Inc

Qualification Test Development for Creep Corrosion

Technical Library | 2021-04-08 00:34:16.0

Creep corrosion is not a new phenomenon, it has become more prevalent since the enactment of the European Union's Restriction of Hazardous Substance (RoHS) Directive on 1 July 2006. The directive bans the use of lead and other hazardous substances in products (where lead-based surface finishes offered excellent corrosion resistance). The higher melting temperatures of the lead-free solders and their poor wetting of copper metallization on PCBs forced changes to PCB laminates, surface finishes and processing temperature-time profiles. As a result, printed circuit boards might have higher risk of creep corrosion.

iNEMI (International Electronics Manufacturing Initiative)

The Impact of Reflowing A Pb-free Solder Alloy Using A Tin/Lead Solder Alloy Reflow Profile On Solder Joint Integrity.

Technical Library | 2008-04-29 15:50:45.0

The electronics industry is undergoing a materials evolution due to the pending Restriction of Hazardous Substances (RoHS) European Directive. Printed wiring board laminate suppliers, component fabricators, and printed wiring assembly operations are engaged in a multitude of investigations to determine what leadfree (Pbfree) material choices best fit their needs. The size and complexity of Pbfree implementation insures a transition period in which Pbfree and tin/lead solder finishes will be present on printed wiring assemblies

Rockwell Collins

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

  1  

finish rohs searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Training online, at your facility, or at one of our worldwide training centers"
IPC Training & Certification - Blackfox

High Precision Fluid Dispensers
Voidless Reflow Soldering

Best Reflow Oven