Technical Library: die attached (Page 1 of 1)

Die Attach Dispensing Methods

Technical Library | 2019-05-21 17:20:36.0

Die attach material selection and process implementation play crucial roles in any microelectronic assembly. The chosen attach methods ultimately affect die stress, functionality, thermal management, and reliability of the assembly. Die attach applications are designed to optimize mechanical attachment of the die to the substrate, to create a thermal path from the die to the substrate, and to create an electrical path for a ground plane connection. Some of the more commonly used die attach materials in the microelectronics industry today are epoxies,polyimides, thermoplastics, silicones, solders, and special low outgassing, low stress, anisotropic adhesives.

ACI Technologies, Inc.

Conductive Adhesive Dispensing, Process Considerations

Technical Library | 1999-08-27 09:24:56.0

Dispensing conductive adhesives in an automated factory environment creates some special challenges. A robust production process starts with understanding the adhesives in their fluid state and which important parameters must be controlled. Developing this understanding requires experience with a large number of materials and valves over time. Common uses of conductive adhesives in surface mount applications, die attach applications, and gasketing are addressed. As vendors of dispensing equipment, the authors see a constant stream of such applications. Dispensing requirements, techniques, and equipment resulting from this experience are discussed. Guidelines for optimizing quality and speed are given.

ASYMTEK Products | Nordson Electronics Solutions

Flip Chip Rework

Technical Library | 2019-05-21 17:34:08.0

Flip chip components have been gaining popularity in the electronics industry since their introduction in the 1960s. Advances in attach methods and adhesives, as well as the drive for smaller and faster electronic devices made the technology take off. The basic premise of the flip chip is that the chip (semiconductor device) is mounted flipped from the traditional position. The traditional method of mounting a die is to mount it on a lead frame with the circuit and bond pads face up. The bond pads then receive a bond wire which then connects to the proper lead on the lead frame. Flip chips are mounted face down onto a substrate using small bumps on the bond pads to make direct electrical connection to their respective pads on the substrate. Stay tuned for more information on attachment techniques next month. This article will focus on how to rework flip chips.

ACI Technologies, Inc.

Challenges in Bare Die Mounting

Technical Library | 2014-05-08 16:34:16.0

Bare die mounting on multi-device substrates has been in use in the microelectronics industry since the 1960s. The aerospace industry’s hybrid modules and IBM’s Solid Logic Technology were early implementations that were developed in the 1960’s. The technologies progressed on a steady level until the mid 1990’s when, with the advent of BGA packaging and chip scale packages, the microelectronics industry started a wholesale move to area array packaging. This paper outlines the challenges for both traditional wire-bond die attached to a printed wiring board (pwb), to the more recent applications of bumped die attached to a high performance substrate.

Die Products Consortium

Controlling Voiding Mechanisms in the Reflow Soldering Process

Technical Library | 2017-11-15 22:49:14.0

While a significant level of voiding can be tolerated in solder joints where electrical conductivity is the main requirement, voiding at any level severely compromises thermal conductivity. For example, in LED lighting modules effective conduction of heat through the 1st level die attach to the substrate and then through the 2nd level attach to the heat sink is critical to performance so that voiding in the solder joints at both levels must be minimized. (...) In this paper, the authors will review the factors that influence the incidence of voids in small and large area solder joints that simulate, respectively, the 1st and 2nd level joints in LED modules and discuss mitigation strategies appropriate to each level. They will also report the results of a study on the effect on the incidence of voids of flux medium formulation and the optimization of the thermal profile to ensure that most of the volatiles are released early in the reflow process.

Nihon Superior Co., Ltd.

A High Thermal Conductive Solderable Adhesive

Technical Library | 2016-11-17 14:37:41.0

With increasing LED development and production, thermal issues are becoming more and more important for LED devices, particularly true for high power LED and also for other high power devices. In order to dissipate the heat from the device efficiently, Au80Sn20 alloy is being used in the industry now. However there are a few drawbacks for Au80Sn20 process: (1) higher soldering temperature, usually higher than 320°C; (2) low process yield; (3) too expensive. In order to overcome the shortcomings of Au80Sn20 process, YINCAE Advanced Materials, LLC has invented a new solderable adhesive – TM 230. Solderable adhesives are epoxy based silver adhesives. During the die attach reflow process, the solder material on silver can solder silver together, and die with pad together. After soldering, epoxy can encapsulate the soldered interface, so that the thermal conductivity can be as high as 58 W/mk. In comparison to Au80Sn20 reflow process, the solderable adhesive has the following advantages: (1) low process temperature – reflow peak temperature of 230°C; (2) high process yield – mass reflow process instead of thermal compression bonding process; (3) low cost ownership. In this paper we are going to present the die attach process of solderable adhesive and the reliability test. After 1000 h lighting of LED, it has been found that there is almost no decay in the light intensity by using solderable adhesive – TM 230.

YINCAE Advanced Materials, LLC.

New Approaches to Develop a Scalable 3D IC Assembly Method

Technical Library | 2016-08-11 15:49:59.0

The challenge for 3D IC assembly is how to manage warpage and thin wafer handling in order to achieve a high assembly yield and to ensure that the final structure can pass the specified reliability requirements. Our test vehicles have micro-bumped die having pitches ranging from 60um down to 30um. The high density of pads and the large die size, make it extremely challenging to ensure that all of the micro-bump interconnects are attached to a thin Si-interposer. In addition, the low standoff between the die and interposer make it difficult to underfill. A likely approach is to first attach the die to the interposer and then the die/interposer sub-assembly to the substrate. In this scenario, the die/interposer sub-assembly is comparable to a monolithic silicon die that can be flip chip attached to the substrate. In this paper, we will discuss various assembly options and the challenges posed by each. In this investigation, we will propose the best method to do 2.5D assembly in an OSAT(Outsourced Assembly and Test) facility.

Invensas Corporation

Impact of FPC Fabrication Process on SMT Reliability

Technical Library | 2013-12-05 17:09:03.0

The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.

Starkey Hearing Technologies

Analysis of Interfacial Cracking in Flip Chip Packages With Viscoplastic Solder Deformation

Technical Library | 2023-11-27 18:29:45.0

This paper examines the modeling of viscoplastic solder behavior in the vicinity of interfacial cracking for flip chip semiconductor packages. Of particular interest is the relationship between viscoplastic deformation in the solder bumps and any possible interface cracking between the epoxy underfill layer and the silicon die. A 3-D finite element code, developed specifically for the study of interfacial fracture problems, was modified to study how viscoplastic solder material properties would affect fracture parameters such as strain energy release rate and phase angle for nearby interfacial cracks. Simplified two-layer periodic symmetry models were developed to investigate these interactions. Comparison of flip chip results using different solder material models showed that viscoplastic models yielded lower stress and fracture parameters than time independent elastic-plastic simulations. It was also found that adding second level attachment greatly increases the magnitude of the solder strain and fracture parameters. As expected, the viscoplastic and temperature dependent elastic-plastic results exhibited greater similarity to each other than results based solely on linear elastic properties. !DOI: 10.1115/1.1649242"

A.T.E. Solutions, Inc.

  1  

die attached searches for Companies, Equipment, Machines, Suppliers & Information