Technical Library: coating thickness (Page 1 of 1)

Atomic Layer Deposition

Technical Library | 2020-01-13 09:48:06.0

Is it possible to coat electronic assemblies with a thin, uniform in thickness, pinhole-free, moisture impervious, truly hermetic (by the MIL-STD-883 definition) film of ceramic material that is far more affordable than placing the same electronic assemblies in the currently used glass-to-metal sealed, thick, heavy, metal-and-ceramic-based hermetic enclosures? Since the coating (called a “conformal coating”) would be both hermetic (moisture proof) and hundreds or thousands of times thinner than the currently used enclosures, it would be both less expensive, lighter, and still just as effective in excluding moisture (hermetic) as the current heavy, bulky, expensive electronic enclosures are.

ACI Technologies, Inc.

Measuring Conformal Coating Thickness

Technical Library | 2015-07-21 13:50:37.0

Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:

ETS - Energy Technology Systems, Inc.

Conformal Coating Thickness Measurement

Technical Library | 2013-10-13 10:54:13.0

The measurement of the conformal coating thickness on a printed circuit board (PCB) to ensure internal and international standards are met is now a critical factor in conformal coating process control. There are several methods for measurement of conformal coating thickness and they fall into two categories. These categories are wet film measurements applied during coating application and dry film measurements made after the coating is dried enough not to damage the coating.

SCH Technologies

Coating Thickness Measurement of Thin Gold and Palladium Coatings on Printed Circuit Boards using X-Ray Fluorescence

Technical Library | 2013-05-30 17:33:26.0

This paper covers the following topics: The Measurement Application, Measurement Requirements, Measurement Problems, Measurement Results, Reference Samples, Conclusions

Fischer Technology, Inc.

Ultrathin Fluoropolymer Coatings to Mitigate Damage of Printed Circuit Boards Due to Environmental Exposure

Technical Library | 2016-05-19 16:03:37.0

As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination. Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing. In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.

3M Company

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

DoD/EPA/DOE SERDP WP-2213: Novel Whisker Mitigating Composite Conformal Coat Assessment

Technical Library | 2023-02-13 19:14:03.0

Technology Focus: Develop and evaluate nanoparticle filled conformal coatings designed to provide long term whisker penetration resistance and coverage on tin rich metal surfaces prone to whisker growth in commercial lead-free electronics used in modern DoD systems. Research Objectives: Identify the fundamental mechanisms by which conformal coatings provide long-term tin whisker penetration resistance and inhibit nucleation/growth. Correlate mechanical properties and coverage thickness to whisker penetration resistance. Project Progress and Results: Functionalized nanosilica and non-functional nanoalumina enhanced polyurethane conformal coatings have shown improved spray coating coverage characteristics and crack resistance during thermal cycling fatigue testing. Lead-free assembly whisker mitigation validation testing is in process. Technology Transition: Current project partners provide coating materials to industry. SERDP test data will be considered during updates to the DoD adopted IPC standards for coating materials and coverage.

BAE SYSTEMS

Factors Affecting the Adhesion of Thin Film Copper on Polyimide

Technical Library | 2017-11-22 12:38:51.0

The use of copper foils laminated to polyimide (PI) as flexible printed circuit board precursor is a standard practice in the PCB industry. We have previously described[1] an approach to very thin copper laminates of coating uniform layers of nano copper inks and converting them into conductive foils via photonic sintering with a multibulb conveyor system, which is consistent with roll-to-roll manufacturing. The copper thickness of these foils can be augmented by electroplating. Very thin copper layers enable etching fine lines in the flexible circuit. These films must adhere tenaciously to the polyimide substrate.In this paper, we investigate the factors which improve and inhibit adhesion. It was found that the ink composition, photonic sintering conditions, substrate pretreatment, and the inclusion of layers (metal and organic) intermediate between the copper and the polyimide are important.

Intrinsiq Materials Inc.

Stencil Options for Printing Solder Paste for .3 Mm CSP's and 01005 Chip Components

Technical Library | 2023-07-25 16:42:54.0

Printing solder paste for very small components like .3mm pitch CSP's and 01005 Chip Components is a challenge for the printing process when other larger components like RF shields, SMT Connectors, and large chip or resistor components are also present on the PCB. The smaller components require a stencil thickness typically of 3 mils (75u) to keep the Area Ratio greater than .55 for good paste transfer efficiency. The larger components require either more solder paste height or volume, thus a stencil thickness in the range of 4 to 5 mils (100 to 125u). This paper will explore two stencil solutions to solve this dilemma. The first is a "Two Print Stencil" option where the small component apertures are printed with a thin stencil and the larger components with a thicker stencil with relief pockets for the first print. Successful prints with Keep-Outs as small as 15 mils (400u) will be demonstrated. The second solution is a stencil technology that will provide good paste transfer efficiency for Area Ratio's below .5. In this case a thicker stencil can be utilized to print all components. Paste transfer results for several different stencil types including Laser-Cut Fine Grain stainless steel, Laser-Cut stainless steel with and w/o PTFE Teflon coating, AMTX E-FAB with and w/o PTFE coating for Area Ratios ranging from .4 up to .69.

Photo Stencil LLC

New High-Speed 3D Surface Imaging Technology in Electronics Manufacturing Applications

Technical Library | 2020-03-26 14:55:29.0

This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.

FocalSpec, Inc.

  1  

coating thickness searches for Companies, Equipment, Machines, Suppliers & Information