Technical Library: wet (Page 3 of 5)

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Moisture Absorption Properties of Laminates Used in Chip Packaging Applications

Technical Library | 2020-11-29 22:06:45.0

Plastic laminates are increasingly used as interposers within chip packaging applications. As a component within the package, the laminate is subjected to package moisture sensitivity testing. The moisture requirements of chip packaging laminates are related to ambient moisture absorption and thermal cycling. Printed wiring board (PWB) laminates, however, are gauged on properties relating to wet processes such as resist developing, copper etching, and pumice scrubbing. Consequently, printed wiring board moisture absorption test methods differ from chip packaging test conditions.

Isola Group

Introduction Of A New PCB Surface Finish For The Electronics Industry

Technical Library | 2021-07-06 21:18:02.0

A new PCB surface finish has been developed that offers outstanding performance and excellent environmental protection. This finish has the potential to replace more common finishes such as ENIG, ImAg, ImSn, ENEPIG, or OSP with a chemically resistant plasma deposited coating. The substitution of the wet processes with this dry plasma process offers significant advantages e.g. lower quantities of chemicals used, environmental benefits and improved operator safety.

Semblant Technologies

Coatings and Pottings: A Critical Update

Technical Library | 2021-08-11 01:00:37.0

Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.

DfR Solutions

The Effect Of Metallic Impurities On The Wetting Properties Of Solder

Technical Library | 1999-05-07 10:38:11.0

This paper is a report of a study made to determine the maximum allowable impurities in solder used for wave soldering applications. This report concludes with a list of impurities compiled from actual analyses of solder which caused production problems. A list of recommended maximum allowable impurities will assist in establishing reliable quality controls on the purity level of the solder in a wave soldering machine.

Kester

Effect of Silicone Contamination on Assembly Processes

Technical Library | 2013-02-07 17:01:46.0

Silicone contamination is known to have a negative impact on assembly processes such as soldering, adhesive bonding, coating, and wire bonding. In particular, silicone is known to cause de-wetting of materials from surfaces and can result in adhesive failures. There are many sources for silicone contamination with common sources being mold releases or lubricants on manufacturing tools, offgassing during cure of silicone paste adhesives, and residue from pressure sensitive tape. This effort addresses silicone contamination by quantifying adhesive effects under known silicone contaminations. The first step in this effort identified an FT-IR spectroscopic detection limit for surface silicone utilizing the area under the 1263 cm-1 (Si-CH3) absorbance peak as a function of concentration (µg/cm2). The next step was to pre-contaminate surfaces with known concentrations of silicone oil and assess the effects on surface wetting and adhesion. This information will be used to establish guidelines for silicone contamination in different manufacturing areas within Harris Corporation... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Harris Corporation

Qualification Test Development for Creep Corrosion

Technical Library | 2021-04-08 00:34:16.0

Creep corrosion is not a new phenomenon, it has become more prevalent since the enactment of the European Union's Restriction of Hazardous Substance (RoHS) Directive on 1 July 2006. The directive bans the use of lead and other hazardous substances in products (where lead-based surface finishes offered excellent corrosion resistance). The higher melting temperatures of the lead-free solders and their poor wetting of copper metallization on PCBs forced changes to PCB laminates, surface finishes and processing temperature-time profiles. As a result, printed circuit boards might have higher risk of creep corrosion.

iNEMI (International Electronics Manufacturing Initiative)

How Does Surface Finish Affect Solder Paste Performance?

Technical Library | 2021-07-06 21:13:36.0

The surface finishes commonly used on printed circuit boards (PCBs) have an effect on solder paste performance in the surface mount process. Some surface finishes are non-planar like hot air solder level (HASL) which can lead to inconsistencies in solder paste printing. Other surface finishes are difficult to wet during reflow like organic solderability preservative (OSP). What is the overall effect of surface finish on solder paste performance? Which solder paste is best for each surface finish? It is the goal of this paper to answer these questions.

FCT ASSEMBLY, INC.

Wettable-Flanks: Enabler for the Use of Bottom-Termination Components in Mass Production of High-Reliability Electronic Control Units

Technical Library | 2018-05-23 12:12:43.0

Driven by miniaturization, cost reduction and tighter requirements for electrical and thermal performance, the use of lead-frame based bottom-termination components (LF-BTC) as small-outline no-leads (SON), quad-flat no leads (QFN) packages etc., is increasing. However, a major distractor for the use of such packages in high-reliability applications has been the lack of a visible solder (toe) fillet on the edge surface of the pins: because the post-package assembly singulation process typically leaves bare copper leadframe at the singulation edge, which is not protected against oxidation and thus does not easily solder-wet, a solder fillet (toe fillet) does not generally develop.

Robert Bosch LLC Automotive Electronics Division

Water Soluble Solder Paste, Wet Behind the Ears or Wave of the Future

Technical Library | 2017-03-22 20:58:08.0

Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.

FCT ASSEMBLY, INC.


wet searches for Companies, Equipment, Machines, Suppliers & Information