Technical Library: solder ball test failure mode (Page 1 of 2)

Pad Cratering

Technical Library | 2020-05-08 18:22:31.0

A customer contacted the Helpline to perform analysis on a lead-free assembly which exhibited intermittent functionality. The lead-free assembly exhibiting intermittent functionality when pressure was applied to the ball grid array (BGA) packages. Industrial adaptation of a Restriction of Hazardous Substances (RoHS) compliant solder standard has created a new host of failure modes observed in lead-free assemblies. Pad cratering occurs when fractures propagate along the epoxy resin layer on the underside of the BGA connecting pads. While originating from process, design, and end use conditions, it is the combination of a rigid lead-free solder with inflexible printed circuit board (PCB) laminates that has advanced the prevalence of this condition. Pad cratering is simply the result of mechanical stress exceeding material limitations.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Surface Finish Issues Affecting Solderability and Reliability

Technical Library | 2019-06-07 14:49:54.0

ACI Technologies was contacted in regards to poor solder joint reliability. The customer submitted an assembly that was exhibiting intermittent opens at multiple locations on a ball grid array (BGA) component. The assembly’s functionality did not survive international shipping, essentially shock and vibration failures, immediately making the quality of the solder joints suspect. The customer was asked about the contract manufacturer and the reflow oven profile as well as the solder paste and surface finish used. The ACI engineering staff evaluated the contract manufacturer’s technique and determined that they were competent in the methods they used for placing thermocouples in the proper locations and developing the reflow oven profile. The surface finish was unusual, but not unheard of, in that it was hard gold over hard nickel, rather than electroless nickel immersion gold (ENIG). The customer was able to supply boundary scan testing data which showed a diagonal row of troublesome BGA pins.

ACI Technologies, Inc.

Numerical Study on New Pin Pull Test for Pad Cratering Of PCB

Technical Library | 2015-02-19 16:54:34.0

Pad cratering is an important failure mode besides crack of solder joint as it’ll pass the regular test but have impact on the long term reliability of the product. A new pin pull test method with solder ball attached and positioning the test board at an angle of 30º is employed to study the strength of pad cratering. This new method clearly reveals the failure mechanism. And a proper way to interpret the finite element analysis (FEA) result is discussed. Impact of pad dimension, width and angle of copper trace on the strength is included. Some findings not included in previous research could help to guide the design for better performance

Flex (Flextronics International)

Pad Cratering Susceptibility Testing with Acoustic Emission

Technical Library | 2015-08-13 15:52:40.0

Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.

Agilent Technologies, Inc.

Head-in-Pillow BGA Defects

Technical Library | 2009-11-05 11:17:32.0

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

AIM Solder

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Solder Joint Reliability Under Realistic Service Conditions

Technical Library | 2014-10-30 01:48:43.0

The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner's rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner's rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed

Universal Instruments Corporation

The Effect of Pb Mixing Levels on Solder Joint Reliability and Failure Mode of Backward Compatible, High Density Ball Grid Array Assemblies

Technical Library | 2015-01-08 17:26:59.0

Regardless of the accelerating trend for design and conversion to Pb-free manufacturing, many high reliability electronic equipment producers continue to manufacture and support tin-lead (SnPb) electronic products. Certain high reliability electronic products from the telecommunication, military, and medical sectors manufacture using SnPb solder assembly and remain in compliance with the RoHS Directive (restriction on certain hazardous substances) by invoking the European Union Pb-in-solder exemption. Sustaining SnPb manufacturing has become more challenging because the global component supply chain is converting rapidly to Pb-free offerings and has a decreasing motivation to continue producing SnPb product for the low-volume, high reliability end users. Availability of critical, larger SnPb BGA components is a growing concern

Sanmina-SCI

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

  1 2 Next

solder ball test failure mode searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Void Free Reflow Soldering

Software for SMT placement & AOI - Free Download.
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...