Technical Library: flux residue (Page 2 of 4)

Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for post soldered PCBA

Technical Library | 2023-04-17 21:17:59.0

The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.

Jabil Circuit, Inc.

Evaluation of No-Clean Flux Residues Remaining After Secondary Process Operations

Technical Library | 2023-04-17 17:05:47.0

In an ideal world, manufacturing devices would work all of the time, however, every company receives customer returns for a variety of reasons. If these returned parts contributed to a fail, most companies will perform failure analysis (FA) on the returned parts to determine the root cause of the failure. Failure can occur for a multitude of reasons, for example: wear out, fatigue, design issues, manufacturing flaw or defect. This information is then used to improve the overall quality of the product and prevent reoccurrence. If no defect is found, it is possible that in fact the product has no defect. On the other hand, the defect could be elusive and the FA techniques insufficient to detect said deficiency. No-clean flux residues can cause intermittent or elusive, hard to find defects. In an attempt to understand the effects of no-clean flux residues from the secondary soldering and cleaning processes, a matrix of varying process and cleaning operation was investigated. Of special interest, traveling flux residues and entrapped residues were examined, as well as localized and batch cleaning processes. Various techniques were employed to test the remaining residues in order to assess their propensity to cause a latent failure. These techniques include Surface Insulation Resistance1 (SIR) testing at 40⁰C/90% RH, 5 VDC bias along with C32 testing and Ion Exchange Chromatography (IC). These techniques facilitate the assessment of the capillary effect the tight spacing these component structures have when flux residues are present. It is expected that dendritic shorting and measurable current leakage will occur, indicating a failing SIR test. However, since the residue resides under the discrete components, there will be no visual evidence of dendritic growth or metal migration.

Foresite Inc.

No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability

Technical Library | 2013-04-11 15:43:17.0

With the explosion of growth in handheld electronics devices, manufacturers have been forced to look for ways to reinforce their assemblies against the inevitable bumps and drops that their products experience in the field. One method of reinforcement has been the utilization of underfills to "glue" certain SMDs to the PCB. Bumped SMDs attached to the PCB with a no-clean soldering process offer the unavoidable scenario of the underfill coming in contact with a flux residue. This may or may not create a reliability issue... First published in the 2012 IPC APEX EXPO technical conference proceedings

Indium Corporation

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

NanoClear Coated Stencils

Technical Library | 2023-05-22 16:49:42.0

Our customers' issues • Apertures are getting smaller • Paste does not release as well • Contaminates the bottom of the stencil • Increases defects / reduces yield  Insufficient solder  Bridging  Solder balls on surface of PCB  Flux residue • Requires more frequent cleaning • Reduced efficiency (wasted time) • Increased use of consumables (cost)  USC fabric (use "cheap" fabric to reduce cost)  Lint creates more defects  Cleaning chemistries (use IPA to reduce cost)  IPA breaks down flux and can create more defects

ASM Assembly Systems (DEK)

Reactivity Of No-Clean Flux Residues Trapped Under Bottom Terminated Components

Technical Library | 2017-07-20 15:18:15.0

As electronic devices increase functionality in smaller form factors, there will be limitations, obstacles and challenges to overcome. Advances in component technology can create issues that may have time delayed effects. One such effect is device failure due to soldering residues trapped under bottom terminated components. If the residues trapped under the component termination are active and can be mobilized with moisture, there is the potential for ion mobilization causing current leakage.

Kester

Combination of Spray and Soak Improves Cleaning under Bottom Terminations

Technical Library | 2014-10-23 18:10:10.0

The functional reliability of electronic circuits determines the overall reliability of the product in which the final products are used. Market forces including more functionality in smaller components, no-clean lead-free solder technologies, competitive forces and automated assembly create process challenges. Cleanliness under the bottom terminations must be maintained in harsh environments. Residues under components can attract moisture and lead to leakage currents and the potential for electrochemical migration (...) The purpose of this research study is to evaluate innovative spray and soak methods for removing low residue flux residues and thoroughly rinsing under Bottom Termination and Leadless Components

KYZEN Corporation

Using Hansen Space to Optimize Solvent Based Cleaning Processes for Manufacturing Electronic Assemblies.

Technical Library | 2009-07-09 17:23:07.0

Sometimes you just cannot clean with water. Good examples of this are: circuits with batteries attached, cleaning prior to encapsulation, ionic cleanliness testing, and non-sealed or other water sensitive parts. High impedance or high voltage circuits need to be cleaned of flux residues and other soils to maximize performance and reliability and, in these types of circuits; water can be just as detrimental as fluxes. When solvent cleaning is called for, Hansen solubility parameters can help target the best solvent or solvent blend to remove the residue of interest, and prevent degradation of the assembly being manufactured. In short, using this approach can time, manufacturing cost and reduce product liability.

Austin American Technology

Conformal Coating over No Clean Flux Residues

Technical Library | 2015-03-04 10:56:26.0

As the proliferation of modern day electronics continues to drive miniaturization and functionality, electronic designers/assemblers face the issue of environmental exposure and uncommon applications never previously contemplated. This reality, coupled with the goal of reducing the environmental and health implications of the production and disposal of these devices, has forced manufacturers to reconsider the materials used in production. Furthermore, the need to increase package density and reduce costs has led to the rapid deployment of leadless packages such as QFN, POP, LGA, and Micro-BGA. In many cases, the manufacturers of these devices will recommend the use of no clean fluxes due to concerns over the ability to consistently remove flux residues from under and around these devices. These concerns, along with the need to implement a tin whisker mitigation strategy and/or increase environmental tolerance, have led to the conundrum of applying conformal coating over no clean residues.

AIM Solder

Optimizing Batch Cleaning Process Parameters for Removing Lead-Free Flux Residues on Populated Circuit Assemblies

Technical Library | 2009-09-18 14:52:06.0

Electronic assembly cleaning processes are becoming increasingly more complex because of global environmental mandates and customer driven product performance requirements. Manufacturing strategies today require process equivalence. That is to say, if a product is made or modified in different locations or processes around the world, the result should be the same. If cleaning is a requirement, will existing electronic assembly cleaning processes meet the challenge? Innovative cleaning fluid and cleaning equipment designs provide improved functionality in both batch and continuous inline cleaning processes. The purpose of this designed experiment is to report optimized cleaning process parameters for removing lead-free flux residues on populated circuit assemblies using innovative cleaning fluid and batch cleaning equipment designs.

Austin American Technology


flux residue searches for Companies, Equipment, Machines, Suppliers & Information

SMT spare parts - Qinyi Electronics

Reflow Soldering 101 Training Course
Selective soldering solutions with Jade soldering machine

Stencil Printing 101 Training Course
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications