Technical Library: fine pitch (Page 1 of 4)

Fiducial Marks

Technical Library | 2019-06-17 15:09:43.0

Very often pick and place machines are programmed using CAD data. This data increases the accuracy, precision, and repeatability of its component placement objectives. CAD data makes fine pitch and small component assemblies repeatable, but cannot adjust to a particular board unless it is exactly the same size and shape of the original board used for programming. The process by which printed circuit boards (PCBs) are made only allows some minor changes inboard size and shape, but these small differences are enough for parts to be misplaced. For this reason we use fiducial marks to increase the chances of precise component alignment.

ACI Technologies, Inc.

Wedge Bonding Tool Selection

Technical Library | 2019-05-23 10:30:22.0

Increasing I/O numbers, device complexity, and product miniaturization requires high precision bonding tools, and sophisticated equipment. Careful consideration should be given to wedge geometry while selecting the tool for a fine pitch wire bonding application. Wire bonding is a process that creates an electrical connection between a die and a substrate or lead typically using gold or aluminum wire. Wedge bonding is a specific type of wire bonding that uses a wedge shaped tool to create the welds. The design of the wedge tool has changed very little over the past decade. The wire is fed at an angle through the back of the wedge. This angle is typically 30 to 60 degrees and is application dependent. Some applications require a higher feed angle due to package clearance issues. Some deep access applications require a 90 degree feed angle. In this configuration, the wire is fed through a hole in the shank of the wedge tool. Wire feed is shown in Figure 1.

ACI Technologies, Inc.

Why Wide Fine Pitch Pads?

Technical Library | 1999-05-07 08:45:39.0

Fine pitch SMT devices, although certainly not new, present more of an assembly processing challenge than 50 mil pitch devices. In fact it seems that the finer the pitch the more difficult or narrower the process window becomes. Besides the pitch of the leads being less on fine pitch devices narrower pad width on the board is typical. With fine pitch designs the board fabrication process is also stressed in that the strip of mask between the pads is designed narrower, the alignment of the mask to copper becomes more critical

Heraeus

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

Process Development And Characterization Of The Stencil Printing Process For Small Apertures

Technical Library | 2008-01-16 18:25:55.0

The consumer's interest for smaller, lighter and higher performance electronics products has increased the use of ultra fine pitch packages, such as Flip Chips and Chip Scale Packages, in printed circuit board (PCB) assembly. The assembly processes for these ultra fine pitch packages are extremely complex and each step in the assembly process influences the assembly yield and reliability.

Speedline Technologies, Inc.

Stencil Design Using Regression:Following IPC 7525 a Way Better

Technical Library | 2010-03-25 06:26:37.0

The complexity of Printed Circuit Assembly process is increasing day by day and causing productivity issues in the industry, introducing ultra fine pitch components (pitch less than 15mil) in PCA is a challenge to minimize risk of defects as solder short, dry solder. This paper is focusing on minimizing these defects.

Larsen Toubro Medical Equipment & Systems Ltd

Fine Pitch Cu Pillar with Bond on Lead (BOL) Assembly Challenges for High Performance Flip Chip Package

Technical Library | 2018-01-17 22:47:02.0

Fine pitch copper (Cu) Pillar bump has been growing adoption in high performance and low-cost flip chip packages. Higher input/output (I/O) density and very fine pitch requirements are driving very small feature sizes such as small bump on a narrow pad or bond-on-lead (BOL) interconnection, while higher performance requirements are driving increased current densities, thus assembling such packages using a standard mass reflow (MR) process and maintaining its performance is a real and serious challenge. (...) In this study a comprehensive finding on the assembly challenges, package design, and reliability data will be published. Originally published in the SMTA International 2016

STATS ChipPAC Inc

Study on Solder Joint Reliability of Fine Pitch CSP

Technical Library | 2015-12-31 15:19:28.0

Today's consumer electronic product are characterized by miniatuization, portability and light weight with high performance, especially for 3G mobile products. In the future more fine pitch CSPs (0.4mm) component will be required. However, the product reliability has been a big challenge with the fine pitch CSP. Firstly, the fine pitch CSPs are with smaller solder balls of 0.25mm diameter or even smaller. The small solder ball and pad size do weaken the solder connection and the adhesion of the pad and substrate, thus the pad will peel off easily from the PCB substrate. In addition, miniature solder joint reduce the strength during mechanical vibration, thermal shock, fatigue failure, etc. Secondly, applying sufficient solder paste evenly on the small pad of the CSP is difficult because stencil opening is only 0.25mm or less. This issue can be solved using the high end type of stencil such as Electroforming which will increase the cost.

Flex (Flextronics International)

Aiming for High First-pass Yields in a Lead-free Environment

Technical Library | 2010-03-04 18:11:53.0

While the electronics manufacturing industry has been occupied with the challenge of RoHS compliance and with it, Pb-free soldering, established trends of increasing functionality and miniaturization have continued. The increasing use of ultra-fine pitch and area-array devices presents challenges in both printing and flux technology. With the decrease in both the size and the pitch of said components, new problems may arise, such as head-in-pillow and graping defects

Indium Corporation

Surface Mount Rework Techniques

Technical Library | 1999-05-09 12:51:38.0

This Technical Note outlines, step by step, the easiest ways to remove and replace surface mounted devices, using the lowest possible temperatures. This document discusses the following topics: Removal and replacement of discrete and passive components (capacitors, resistors, SOTs), Removal of two-sided components (SOICs, SOJs, TSOPs), Removal of quad components (PLCCs, QFPs), Replacement of quad components including fine-pitched devices.

Metcal


fine pitch searches for Companies, Equipment, Machines, Suppliers & Information