Technical Library: application (Page 3 of 33)

Mastering Precision: I.C.T's SMT Conformal Coating Valves

Technical Library | 2023-12-06 03:28:49.0

Mastering Precision: I.C.T's SMT Conformal Coating Valves Introduction Of SMT Conformal Coating Valves: In various industries, including electronics, lighting, energy, and life sciences, the SMT conformal coating process plays a critical role. Precision is key, and the choice of a SMT coating valve significantly influences application quality. This article explores I.C.T's SMT conformal coating valves, focusing on the C-0101, C-L101, PJ-01, PJ-01 (with plastic bucket), C-0100, D-0100, D-0300, and the W Series. C-0101 Water Curtain Spray SMT Conformal Coating Valves: The C-0101, a non-atomizing water curtain spray valve, excels with low-viscosity solvent materials. It ensures clean and precise edges in applications like conformal coatings, UV adhesives, backfilling, and volatile substances. C-L101 Rotary Water Curtain Spray Valve: Similar to the C-0101, the C-L101 suits low-viscosity solvent materials, offering a precise edge without splashing for various coatings. PJ-01 Injection Valve (Without Plastic Bucket): Designed for high-precision applications in electronics, lighting, energy, and life sciences, the PJ-01 excels in accurate dispensing and coating. It accommodates various materials, including red glue, liquids, and pastes. PJ-01 Injection Valve (With Plastic Bucket 30CC): The PJ-01, with a 30cc plastic bucket, maintains high precision for complex circuit board applications, offering precise dispensing for materials like red glue, liquids, and pastes. C-0100 Non-Rotating Film Valve: Different from pneumatic atomizing valves, the C-0100 provides precise edge definition without air pressure involvement. It addresses issues related to atomizing drift and fast-drying adhesives, allowing control over the film width. D-0100 Precision Valve: The D-0100, with a unique fluid-sealing structure driven by compressed air, minimizes seal replacement frequency. Suitable for various fluid dispensing, it handles UV adhesives, encapsulating materials, silicones, epoxies, and surface coatings. D-0300 Dispensing Valve: Tailored for precision fluid dispensing at low driving pressure, the D-0300 accommodates a range of materials, including acrylics, silicones, epoxies, and UV adhesives. It's ideal for applications where accuracy and consistency are crucial. W Series: Needle Design Atomization Valves: The W Series offers needle design valves leaving zero residue. Easy to clean without disassembly, they provide adjustable fluid and air pressure for various coating materials, ensuring excellent atomization effects. Analyzing The Options: When selecting a conformal coating valve, consider specific application requirements. C-0101 and C-L101 suit low-viscosity solvent materials, providing clean and precise edges. PJ-01, with or without a plastic bucket, offers high-precision dispensing for complex applications. C-0100 and D-0100 are versatile for various materials, and D-0300 excels in precision dispensing. The W Series offers residue-free needle design atomization valves. Choose based on material, precision, and coating needs. Integration with I.C.T's Conformal Coating Machines: Integral to I.C.T's Conformal Coating machines, these valves enable precise application tailored to specific requirements. Machines like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650 come equipped with a range of valve options catering to diverse production line needs. I.C.T SMT Coating Machine.png Conclusion: Selecting the right conformal coating valve is crucial for consistent, high-quality results. Evaluate options based on material, precision, and coating requirements. I.C.T provides tailored solutions for electronic assembly needs. For detailed insights into coating and dispensing machines, follow the provided link. Professional engineers are ready to assist in designing a production line that perfectly matches your requirements, ensuring optimal performance. Contact us for more information and tailored solutions to elevate your conformal coating processes.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Advanced Solder Paste Dispensing

Technical Library | 2008-10-15 20:16:12.0

Solder paste dispensing is usually considered a slow process. Due to the speed advantages, screen printing is used to apply solder paste whenever possible. However, screen printing is not always an option. Leveraging the high speed of piezo drive technology opens the door to a broad range of solder paste dispensing applications. The ability to dispense dots under 300-μm diameter, even as small as 125 μm, enables BGA rework, small geometry deposits for miniaturized passive components, electrical connections in recessed cavities, and RF shield attach for handheld devices.

ASYMTEK Products | Nordson Electronics Solutions

Die Attach Dispensing Methods

Technical Library | 2019-05-21 17:20:36.0

Die attach material selection and process implementation play crucial roles in any microelectronic assembly. The chosen attach methods ultimately affect die stress, functionality, thermal management, and reliability of the assembly. Die attach applications are designed to optimize mechanical attachment of the die to the substrate, to create a thermal path from the die to the substrate, and to create an electrical path for a ground plane connection. Some of the more commonly used die attach materials in the microelectronics industry today are epoxies,polyimides, thermoplastics, silicones, solders, and special low outgassing, low stress, anisotropic adhesives.

ACI Technologies, Inc.

COTS Cooling

Technical Library | 2019-05-31 14:15:01.0

ACI Technologies (ACI) is working on a project where one of the challenges is removing a large quantity of heat from audio amplifier circuits. This challenge is further complicated in that the heat generating circuits are located in a rack mounted box that needs to be shielded from electro-magnetic interference (EMI). Mechanically, this means that there cannot be open passages into the rack mounted box. We will first review the basic types of cooling available as commercial off-the-shelf (COTS) systems for the electronics industry, then discuss the pros and cons of each for different applications, and finally reveal the criteria and solution for the ACI project.

ACI Technologies, Inc.

ALD of Alumina Ceramic Films for Hermetic Protection

Technical Library | 2020-08-05 17:13:12.0

A primary issue in electronics reliability for military applications is the ability to ensure long term operability in harsh, extreme environments. This requires more rigid standards, such as the MIL-STD-883 (Department of Defense Test Method Standard for Microcircuits), which commercial grade electronics typically do not satisfy. A solution commonly employed is to package the critical electronic components in hermetically sealed metal or ceramic enclosures which are costly and labor intensive. Not only are the components more expensive, but the assembly process is more difficult to automate, resulting in a substantial cost premium for military grade electronics.

ACI Technologies, Inc.

Flip Chip Attach Techniques

Technical Library | 2019-05-21 17:38:55.0

Last month we presented Flip Chip Rework.As promised, this month we follow up with attachment techniques. Flip chip assembly is a key technology for advanced packaging of microelectronic circuits. It allows attachment of a bare chip to a packaging substrate in a face-down configuration, with electrical connections between the chip and substrate via conducting “bumps.” Flip chip technology was first invented by IBM for mainframe computer application in the early 1960s. Semiconductor devices are mounted face down and electrically and mechanically connected to a substrate (Figure 1). IBM called this manufacturing process a C4 process (controlled collapse chip connection).

ACI Technologies, Inc.

SMT Component Reliability for RF Applications

Technical Library | 2019-05-31 14:19:24.0

ACI Technologies (ACI) characterized the reliability of surface mount RF components. The RF frequency band of interest was the X band (10.7 to 11.7GHz). A two pronged test for reliability of circuit card assemblies (CCA) was designed for both extreme thermal cycling and vibration. The rapid thermal cycling and extreme vibration testing simulates the total stress encountered by the assembly over the life of the product but accomplishes it in a relatively short period of time. In order to perform the reliability testing, a test vehicle consisting of a printed circuit board with test structures and components, was designed, fabricated, and assembled at ACI.

ACI Technologies, Inc.

Revolutionizing Tech: SMT Auto IC Programming Machine Mastery

Technical Library | 2023-12-27 12:27:29.0

Background Of SMT Auto IC Programming Machines In the dynamic landscape of electronics manufacturing, SMT Auto IC Programming Machines, also known as IC Programmers, have become indispensable tools. These machines play a crucial role in the semiconductor industry, addressing the escalating demand for efficient programming tools as electronic devices become more intricate. Specifically designed to load firmware or programs onto integrated circuits (ICs), these machines ensure the functionality of ICs and facilitate their seamless integration into various electronic applications. Significance Of SMT Auto IC Programming Machines The significance of SMT Auto IC Programming Machines lies in their ability to streamline the manufacturing process of electronic devices. ICs, ranging from microcontrollers to memory chips, serve as the central processing units in electronic systems. IC Programming Machines enable the customization of these ICs, allowing manufacturers to program specific functionalities, update firmware, and adapt to diverse applications. Furthermore, these machines contribute significantly to the rapid development of new products. In a market where time-to-market is critical, IC Programming Machines provide the flexibility to quickly program different ICs, reducing production lead times and enhancing overall efficiency. Operational Principles Of IC Programming Machines Hardware Architecture SMT Auto IC Programming Machines consist of a sophisticated hardware architecture comprising a controller, socket, pin detection system, and additional peripherals. The controller acts as the brain, orchestrating the programming process, while the socket provides a connection interface for the IC. Programming Algorithms At the core of IC Programming Machines are various programming algorithms encompassing essential operations such as erasure, writing, and verification. The choice of algorithms depends on the specific requirements of the IC and the desired functionality. Communication Protocols Effective communication between the IC Programming Machine and the target IC is facilitated by standardized communication protocols such as JTAG, SPI, and I2C. The selection of a particular protocol is influenced by factors such as data transfer speed, complexity, and compatibility with the IC. Advanced Features And Characteristics Equipped with advanced features like parallel programming, support for multiple ICs, and online programming, IC Programming Machines elevate their capabilities, enhancing production efficiency and flexibility. Practical Applications IC Programming Machines find practical applications across various industries, from automotive electronics to consumer electronics. Case studies illustrate how these machines contribute to improved production workflows and product quality by ensuring programmed ICs meet specific application requirements. Future Trends Looking ahead, the future of SMT Auto IC Programming Machines holds exciting prospects. Anticipated trends include advancements in programming speed, support for emerging communication protocols, and increased integration with smart manufacturing systems. These developments aim to address the evolving demands of the electronics industry. I.C.T-910 Programming Machine Invest in the I.C.T-910 for an efficient and reliable IC programming experience. The I.C.T-910 complies with European safety standards, holding a CE certificate that attests to its quality and adherence to safety regulations. Our skilled engineers at I.C.T are committed to ensuring your success by providing professional training and assistance with equipment installation. I.C.T: Your Comprehensive SMT Equipment Provider I.C.T stands as a comprehensive SMT equipment provider, offering end-to-end solutions for your SMT production line needs. Tailoring services to your specific requirements and product specifications, we conduct a thorough analysis to determine the precise SMT equipment that suits your needs. Our commitment is to deliver the highest quality and cost-effective solutions, ensuring optimal performance and efficiency for your production processes. Partner with I.C.T for a customized approach to SMT equipment that aligns perfectly with your manufacturing goals. Contact us for an inquiry today.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Identifying Flux Residues

Technical Library | 2019-05-23 10:42:00.0

Why identify flux residues? The primary purpose of flux is to reduce species of metal oxides from solderable surfaces, and to act as a mechanism for lifting and removing debris. If the assembly is not properly cleaned after manufacturing, flux may continue to reduce metals and may eventually corrode the assembly. When the assembly is powered, the metal ions may precipitate along electromagnetic field lines and form dendritic shorts. In addition, the presence of residue can alter the insulation properties of a board, affect the adhesion of the conformal coating, or interfere with the moving parts of the assembly. In radio frequency (RF) applications, flux may change the RF properties on the surface of the printed circuit board (PCB) such as the dielectric strength, surface resistance, and Q-resonance.

ACI Technologies, Inc.

Cleanliness/Corrosion Mitigation

Technical Library | 2019-09-27 09:14:41.0

One of the most critical factors in preventing corrosion from occurring in electronics is maintaining the state of cleanliness. This is not an easy feat to achieve. Corrosion is defined as the deterioration of a material or its properties due to a reaction of that material with its chemical environment. [1] So, to prevent corrosion from occurring, either the material or the chemical environment must be adjusted. Adjusting the material usually means application of a protective coating or replacing a more reactive material with a less reactive material. Adjusting the chemical environment usually means removing ionic species through cleaning, and removing moisture, usually with a conformal coating or hermetic package. Ionic species and moisture are problematic because they form an electrolyte which is able to conduct ions and electricity. Any metal that comes into contact with the electrolyte can begin to corrode.

ACI Technologies, Inc.


application searches for Companies, Equipment, Machines, Suppliers & Information