Technical Library | 2023-07-22 02:26:05.0
Patch offset; Uneven patches throughout the substrate (each substrate is offset in a different way); Only part of the substrate is offset; Only certain components are offset; The patch Angle is offset; Component absorption error; Laser identification (component identification) error; Nozzle loading and unloading error; Mark (BOC mark, IC mark) identification error; Image recognition error (KE-2060 only); Analysis of the main reasons for throwing material. More information about KINGSUN please Contact US at jenny@ksunsmt.com or visit www.ksunsmt.com
Technical Library | 2010-01-13 12:34:10.0
Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.
Technical Library | 2021-03-10 23:57:29.0
Latent short circuit failures have been observed during testing of Printed Circuit Boards (PCB) for power distribution of spacecraft of the European Space Agency. Root cause analysis indicates that foreign fibers may have contaminated the PCB laminate. These fibers can provide a pathway for electromigration if they bridge the clearance between nets of different potential in the presence of humidity attracted by the hygroscopic laminate resin. PCB manufacturers report poor yield caused by contamination embedded in laminate. Inspections show ...
Technical Library | 2008-10-23 15:36:58.0
As part of continuous process improvement at KEMET, most failure modes caused by the capacitor manufacturing process have been systematically eliminated. Today these capacitor manufacturing-related defects are now at a parts per billion (PPB) level. Pareto analysis of customer complaints indicates that the #1 failure mode is IR failure due to flex cracks.
Technical Library | 2019-07-30 15:29:50.0
Area Array microelectronic packages with small pitch and large I/O counts are now widely used in microelectronics packaging. The impact of various package design and materials/process parameters on reliability has been studied through extensive literature review. Reliability of Ceramic Column Grid Array (CCGA) package assemblies has been evaluated using JPL thermal cycle test results (-50°/75°C, -55°/100°C, and -55°/125°C), as well as those reported by other investigators. A sensitivity analysis has been performed using the literature data to study the impact of design parameters and global/local stress conditions on assembly reliability. The applicability of various life-prediction models for CCGA design has been investigated by comparing model's predictions with the experimental thermal cycling data. Finite Element Method (FEM) analysis has been conducted to assess the state of the stress/strain in CCGA assembly under different thermal cycling, and to explain the different failure modes and locations observed in JPL test assemblies.
Technical Library | 2023-01-23 20:50:05.0
PDC Outline Section 0: Intro Section 1: What is reliability and root cause? Section 2: Overview of failure mechanisms Section 3: Failure analysis techniques – Non-destructive analysis techniques – Destructive analysis – Materials characterization Section 4: Summary and closure
Technical Library | 2009-05-21 13:41:05.0
Failure due to board flex cracks persists as the dominant failure mode in multi-layer ceramic capacitors (MLCC). (...) This paper is intended to show the impact of temperature cycling, high-temperature life tests, and multiple bend exposures to the MLCC with this flexible termination.
Technical Library | 2021-09-21 20:36:45.0
The present paper gives an overview of surface failures, internal nonconformities and solders joint failures detected by microscopic analysis of electronic assemblies. Optical microscopy (stereomicroscopy) and Fourier-Transform- Infrared (FTIR) microscopy is used for documentation and failure localization on electronic samples surface. For internal observable conditions a metallographic cross-section analysis of the sample is required. The aim of this work is to present some internal and external observable nonconformities which frequently appear in electronic assemblies. In order to detect these nonconformities, optical microscopy, cross section analysis, FTIR-microscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) were used as analytical techniques.
Technical Library | 2023-01-10 20:08:36.0
Nickel corrosion in ENIG and ENEPIG is occasionally reported; when encountered at assembly it manifests as soldering failures in ENIG and wire bond lifts in ENEPIG. Although not common, it can be highly disruptive, resulting in missed deliver schedules, supply chain disruption, failure analysis investigations, and liability - all very costly.
Technical Library | 2021-09-15 18:44:20.0
Analyzing failures is a critical process in determining the physical root causes of problems. The process is complex, draws upon many different technical disciplines, and uses a variety of observation, inspection, and laboratory techniques. One of the key factors in properly performing a failure analysis is keeping an open mind while examining and analyzing the evidence to foster a clear, unbiased perspective of the failure.