Technical Library: delamination pcb (Page 1 of 1)

Understanding and optimizing delamination/recycling of printed circuit boards using a supercritical carbon dioxide process

Technical Library | 2024-09-02 17:01:54.0

A printed circuit board (PCB) is an integral component of any electronic product and is among the most challenging components to recycle. While PCB manufacturing processes undergo generations of innovation and advancement with 21st century technologies, the recycling of PCBs primarily employs 1920's shredding and separation technologies. There is a critical need for alternative PCB recycling routes to satisfy the increasing environmental demands. Previous work has developed an environmentally benign supercritical fluid process that successfully delaminated the PCB substrates and separated the PCB layers. While this work was successful in delamination of the PCB substrates, further understanding is needed to maximize the interactions between the supercritical fluid and PCB for an optimal processing scenario. As such, this research presents an exploratory study to further investigate the supercritical fluid PCB recycling process by using supercritical carbon dioxide and an additional amount of water to delaminate PCB substrates. The focus of this study is to test delamination success at low temperature and pressure supercritical conditions in comparison to the previous studies. Furthermore, material characterization methods, such as differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared spectroscopy, are included to study the delaminating mechanisms. Results from the recycling process testing showed that the PCB substrates delaminated easily and could be further separated into copper foils, glass fibers and polymers. Surprisingly, the material characterization suggested that there were no significant changes in glass transition temperature, crosslink density, and FTIR spectra of the PCBs before and after the supercritical fluid process.

Arizona State University

Guidelines/recommendations "Drying of PCBs before soldering"

Technical Library | 2024-02-05 17:51:01.0

Objective:  Drying = reducing the humidity in PCB before soldering  Preventing delamination caused by thermal stress after moisture absorption Methods:  Drying in convection and/ or vacuum oven  Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)

ZVEI - German Electro and Digital Industry Association

Pb-Free Reflow, PCB Degradation, and the Influence of Moisture Absorption

Technical Library | 2024-09-02 17:31:09.0

The cracking and delamination of printed circuit boards (PCB) during exposure to elevated thermal exposure, such as reflow and rework, have always been a concern for the electronics industry. However, with the increasing spread of Pb-free assembly into industries with lower volume and higher complexity, the occurrence of these events is increasing in frequency. Several telecom and enterprise original equipment manufacturers (OEMs) have reported that the robustness of their PCBs is their number one concern during the transition from SnPb to Pb-free product. Cracking and delamination within PCBs can be cohesive or adhesive in nature and can occur within the weave, along the weave, or at the copper/epoxy interface (see Figure 1). The particular role of moisture absorption and other PCB material properties, such as out of plane expansion on this phenomenon is still being debated.

DfR Solutions (acquired by ANSYS Inc)

Coatings and Pottings: A Critical Update

Technical Library | 2021-08-11 01:00:37.0

Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.

DfR Solutions (acquired by ANSYS Inc)

Instrumentation for Studying Real-time Popcorn Effect in Surface Mount Packages during Solder Reflow

Technical Library | 2014-06-12 16:40:19.0

Occurrence of popcorn in IC packages while assembling them onto the PCB is a well known moisture sensitive reliability issues, especially for surface mount packages. Commonly reflow soldering simulation process is conducted to assess the impact of assembling IC package onto PCB. A strain gauge-based instrumentation is developed to investigate the popcorn effect in surface mount packages during reflow soldering process. The instrument is capable of providing real-time quantitative information of the occurrence popcorn phenomenon in IC packages. It is found that the popcorn occur temperatures between 218 to 241°C depending on moisture soak condition, but not at the peak temperature of the reflow process. The presence of popcorn and delamination are further confirmed by scanning acoustic tomography as a failure analysis.

WASET - World Academy of Science, Engineering and Technology

Moisture Measurements in PCBs and Impact of Design on Desorption Behaviour

Technical Library | 2018-09-21 10:12:53.0

Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.

National Physical Laboratory

  1  

delamination pcb searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830

2024 Eptac IPC Certification Training Schedule

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
AI Data Center Hardware Manufacturing

World's Best Reflow Oven Customizable for Unique Applications
PCB Handling Machine with CE

Smt Feeder repair service centers in Europe, North, South America
PCB Handling with CE

We offer SMT Nozzles, feeders and spare parts globally. Find out more
Voidless Reflow Soldering

High Precision Fluid Dispensers