
1

Intel StrataFlashTM Memory Technology Development
and Implementation

Al Fazio, Flash Technology Development and Manufacturing, Santa Clara, CA. Intel Corp.
Mark Bauer, Memory Components Division, Folsom, CA. Intel Corp.

Index words: StrataFlash, MLC, flash, memory.

Abstract

This paper will review the device physics governing the
operation of the industry standard ETOXTM flash memory
cell and show how it is ideally suited for multiple bit per
cell storage, through its storage of electrons on an
electrically isolated floating gate and through its direct
access to the memory cell.  The device and reliability
physics aspects of the three key technology features of
multiple-levels-per-cell (M.L.C.): precise charge
placement, precise charge sensing, and precise charge
retention are discussed.  The mixed signal design
implementation of these features is reviewed along with
challenges for low periphery circuit overhead and
standard flash memory product performance. Lastly,
process manufacturing aspects are reviewed and it is
shown how Intel StrataFlashTM memory is manufactured
on the same process flow and at the same high yields as
standard flash memory.

Introduction
The concept of M.L.C. is ideally suited to the flash
memory cell.  The cell operation is governed by electron
charge storage on an electrically isolated floating gate.
The amount of charge stored modulates the flash cell’s
transistor characteristic.   M.L.C. requires three basic
elements: (1) Accurate control of the amount of charge
stored, or placed, on the floating gate such that multiple
charge levels, or multiple bits, can be stored within each
cell, an operation called placement;  (2) accurate
measurement of the transistor characteristics to determine
which charge level, or data bit, is stored, an operation
called sensing; and (3) accurate charge storage, such that
the charge level, or data bit, remains intact over time, an
operation called retention.  These elements are achieved
by exploiting stable device operation regions and by the
direct cell access of the ETOX flash memory array.

Flash Cell Structure and Operation
An explanation of M.L.C. first requires a review of the
flash memory cell.  The ETOX flash memory cell and
products[1] have a long manufacturing history, having
evolved in the late 1980’s from EPROMs, which had been
an industry standard from the early 1970’s.

Cell Structure

N+Source N+ Drain

Control Gate

Floating Gate
Tunnel

Oxide

ONO

P- Substrate

Figure 1: ETOX flash memory cell cross section

Figure 1 shows a cross-sectional view of a flash cell.  It
consists of an N-channel transistor with the addition of an
electrically isolated poly-silicon floating gate.  Electrical
access to the floating gate is only through a capacitor
network of surrounding SiO2 layers and source, drain,
transistor channel, and poly-silicon control gate terminals.
Any charge present on the floating gate is retained due to
the inherent Si-SiO2 energy barrier height, leading to the
non-volatile nature of the memory cell.  Characteristic of
the structure is a thin tunneling oxide (~100Å), an abrupt
drain junction, a graded source junction, ONO (oxide-
nitride-oxide) inter-poly oxide, and a short electrical
channel length (~0.3µ). Because the only electrical
connection to the floating gate is through capacitors, the
flash cell can be thought of as a linear capacitor network
with an N-channel transistor attached.  The total
capacitance of the cell (CTOT) is equal to the additive



Intel Technology Journal Q4’97

2

capacitance of the network. For convenience, coupling
ratio terms, which are defined as the ratio of terminal
voltage coupled to the floating gate, can be defined as
follows:

GCR =control gate coupling ratio,

DCR = drain coupling ratio, and

SCR = source coupling ratio.

Therefore, a change in control gate voltage will result in a
change in the floating gate voltage, ∆VFG=∆VCG*GCR.
The basic equation for the capacitor network is

VFG=QFG/CTOT + GCR*VCG + SCR*VSRC+DCR*VDRN

(1)

where QFG = the charge stored on the floating gate.

A simple first-order transistor equation of drain current
says

ID=GM*(V FG-VCG-VDRN/2)*VDRN                                    (2)

where GM=qµeCOXZE/LE

This equation is very inexact for the small geometry of the
flash cell, but nevertheless the conclusions hold.
Substituting VFG of the basic coupling ratio Equation (1)
into the basic transistor I-V Equation (2) leads to the
conclusions that the transconductance of the transistor
(and also the pre-threshold slope) degrades by GCR, while
the threshold voltage, VT, depends upon QFG, the charge
stored on the floating gate.  Therefore, the VT depends
upon QFG, while the I-V shape does not.  Very simply, the
flash cell can be thought of as a capacitor which is
charged and discharged, the charge value being
determined by the amplification of the transistor I-V.  To
give an idea of the amount of charge, every volt of cell
threshold corresponds to approximately 10,000 electrons
of floating gate charge.

Cell Operation: Programming

Source Drain

Gate ~ 12V

~ 6 V

Figure 2: Cell bias conditions during programming

Programming a flash cell means that charge, or electrons,
are added to the floating gate.  Figure 2 shows the cell

bias conditions during program operation.  A high drain to
source bias voltage is applied, along with a high control
gate voltage.  The gate voltage inverts the channel, while
the drain bias accelerates electrons towards the drain.
Programming a flash cell, by channel hot electrons, can be
understood by use of the lucky electron model[2], as
illustrated by the energy band diagram in Figure 3.  In the
lucky electron model, an electron crosses the channel
without collision thereby gaining 5.5-6.0eV of kinetic
energy, more than sufficient to surmount the 3.2eV Si-
SiO2 energy barrier.  However, the electron is traveling in
the wrong direction.  Its momentum is directed towards
the drain.  Prior to entering the drain and being swept
away, this lucky electron experiences a collision with the
silicon lattice and is re-directed towards the Si-SiO2

interface, with the aid of the gate field.  It has sufficient
energy to surmount the barrier.  However, an electron
does not have to be completely lucky.  It can be
“somewhat lucky” or “barely lucky,” making the process
of programming efficient.  We can observe from this
model that the lateral field, determined by bias voltage,
junction profiles, electrical channel length, and channel
doping are important to the effectiveness of generating
energetic electrons and are therefore key to the M.L.C.
placement operation. Hence the abrupt drain junction and
short channel length of the cell structure. After
programming is completed, electrons are added to the
floating gate, increasing the cell’s threshold voltage.
Programming is a selective operation, uniquely occurring
on each individual cell.

Figure 3: Energy band diagram of programming

Cell Operation: Erase

The distinguishing feature between EPROM and flash
memory is the erase operation.  EPROM removes
electrons from the floating gate by exposure to ultra-violet



Intel Technology Journal Q4’97

3

light.  A photon of this light source has high enough
energy that if transferred to an electron on the floating
gate, that electron will have enough energy to surmount
the Si-SiO2 energy barrier and be removed from the
floating gate.  This is a rather cumbersome operation
requiring a UV-transmissive package and a light source. It
is also rather slow and costly, often requiring the removal
of the memory from the system.  In flash, the contents of
the memory, or charge, are removed by means of applying
electrical voltages, hence to be erased in a flash, with the
memory remaining in the system.  The electrical erase of
flash is achieved by the quantum-mechanical effect of
Fowler-Nordheim Tunneling[3], for which the bias
conditions are shown in Figure 4.  Under these conditions,
a high field (8-10MV/cm) is present between the floating
gate and the source.  The source junction experiences a
gated-diode condition during erase, hence the graded
source junction of the cell structure.  As evidenced by the
energy band diagram of Figure 5, electrons tunneling
through the first ~30Å of the SiO2 are then swept into the
source.  After erase has been completed, electrons have
been removed from the floating gate, reducing the cell
threshold.  While programming is selective to each
individual cell, erase is not, with many cells (typically
64k-Bytes) being erased simultaneously.

Source Drain

Gate: ~-10V

Float
5-6V

Figure 4: Cell bias conditions during erase

Figure 5: Cell energy band diagram during erase

Cell Operation: Read

The read operation of the cell should now be apparent.
Storing electrons (programming) on the floating gate (QFG

< 0), increases the cell Vt.  By applying a control gate
voltage and monitoring the drain current, the difference
between a cell with charge and a cell without charge on
their floating gates can be determined (Figure 6).  A sense
amplifier compares the cell drain current with that of a
reference cell (typically a flash cell which is programmed
to the reference level during manufacturing test).  An
erased cell has more cell current than the reference cell
and therefore is a logical “1,” while a programmed cell
draws less current than the reference cell and is a logical
“0.”  The floating-gate charge difference between these
two states is roughly 30,000 electrons.



Intel Technology Journal Q4’97

4

C
el

l D
ra

in
 
C

ur
re

nt

Read Gate Bias

Control Gate Voltage

Erase Current
“1”

Reference
Current

Program Current
“0”

Erased Cell

Reference Cell

Program Cell

Figure 6: Erase, program and reference cell I-V

Array Configuration

Figure 7 shows a schematic drawing of the flash memory
cells in a NOR array configuration.  In this configuration,
cells on the same wordline, or row, share common control
gates. Cells on common bitlines, or columns, share
common drains, which are connected via low resistance
metalization, providing direct access to each cell’s drain
junction.  The sources for cells in the array are common.
They are connected locally via common degenerately
doped silicon and globally via low resistance metalization.
Decoders are linked to the control gate wordlines and
drain bitlines to uniquely select cells at the cross point
location.  The direct access to the cell in this configuration
versus alternative array architectures that have parasitic
resistance or devices, ensures that accurate voltages can
be applied to the cell and IR drops are minimized.  This is
a key aspect to achieving M.L.C.

Source Lines (SL)
SL SLSL

WL

WL

WL

WL

BL BL BL

Bitlines  (BL)

W
or

dl
in

es
  (

W
L)

Figure 7: Array configuration

M.L.C. Key Features

We have reviewed thus far how a one bit per cell (1B/C)
flash memory operates.  As can be inferred from the
previous discussion, M.L.C. is simply a means by which
charge on the floating gate is modulated and detected to
levels lower than the 30,000 electrons described above,
such that intermediate charge levels, or states, can be
extracted from the cell.  These states can now represent
not just the simple 1B/C “1” and “0,” but rather an M.L.C.
representation with four distinct charge states: “11,” “10,”
“01” and “00,” or 2 bits in one cell.  These four distinct
levels are illustrated in the I-V curve of Figure 8. The key
aspects of achieving these intermediate states, or levels,
are precise charge placement, precise charge sensing, and
precise charge retention.

C
el

l D
ra

in
 C

ur
re

nt

Read Gate Bias

Control Gate Voltage

Erase Current “11”

Reference 1 current

Level “10” 
Current Range

Ref. 2 Current

Level “01” 
Current Range

Ref. 3 Current

Level “00” 
Current Range < 0

Figure 8: Cell and reference I-V curves of 4-level 2B/C

Precise Charge Placement

A comparison of Figures 6 and 8 shows that M.L.C.
requires a means to control how much programming
occurs within a cell.  For a 1B/C product, all that is
necessary is to have enough programming to change a “1”
into a “0.”  Over-programming a cell to much higher Vt’s
(adding more floating gate charge) would be fine.  This is
not the case for M.L.C., where too much programming
would cause an intermediate level to overshoot onto the
next level.  For instance, if a “10” was desired, but a cell
was over programmed, a “01” might occur, leading to
erroneous data. Therefore, a method of controlling
precisely how much charge is transferred to the floating
gate is required.  Enough charge is needed to reach a state
level without overshooting the desired level.



Intel Technology Journal Q4’97

5

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Programming Time (seconds)

P
ro

gr
am

m
in

g 
V

t
Control Gate = N

Control Gate = N+1

� Linear   | Saturation �

Figure 9: Programming threshold vs. time curve

To gain insight into how such precise control can be
obtained, let’s take a deeper look into the flash cell’s
programming characteristics.  Figure 9 shows how the
flash cell’s Vt changes as a function of log-time under two
different bias conditions.  Two regions of operation are
shown: linear and saturation, so-called because the linear
region is linear when plotted in linear time, and the
saturation region is where the cell Vt changes little with
time, analogous to a MOS transistor I-V curve.  Note also
that in the linear region, the control gate voltage has little
influence on the rate of programming, while in the
saturation region, the control gate voltage has a strong
dependence upon the saturated Vt. A characteristic of
Figure 9 is that the flash cell programming slows as more
charge is added to the floating gate.  The reason for this
behavior is that when in the linear region, energetic
electrons, near the drain, are attracted to the floating gate.
As programming progresses, the floating gate (which is
coupled to the control gate and drain biases as governed
by Equation 1) becomes charged more negatively, until it
eventually reaches the same bias potential as the drain
voltage. At this point, the energetic electrons become
repelled by the floating gate charge.  Programming slows,
as near-drain electrons must tunnel through the SiO2

barrier, or less energetic mid-channel electrons “jump”
over the barrier.  The strong gate dependence results from
the vertical field limitation in this region. One can also see
from Figure 9 that the saturated Vt increases in a one for
one fashion with an increase in the programming control
gate voltage. This is a simple result of the coupling
Equation (1).

Given this characteristic curve, one could devise several
possible methods of controlling the charge transfer to the
floating gate.  These methods would have to pass the
criteria of being reliable (no overshoot), controllable
(simple to implement), and fast (to ensure compatibility
with standard flash memory product features).
Programming in the linear region while being fast is not
controllable. In this region, programming Vt is

exponentially dependent upon time and the electron
energy distribution (as determined by drain bias, channel
length, doping profiles, etc.). Small variations will lead to
large changes in the cell threshold and therefore overshoot
of the desired state, thereby having a high likelihood of
being unreliable. Minimization of these variations would
be also difficult to implement.  In the saturated region, the
cell Vt simply depends upon the applied control gate
voltage.  Control in this region is more achievable.  With
ease of control, design optimization practices can be
employed to achieve fast programming. This will be
shown later.  Therefore, to achieve speed and control, a
placement algorithm that employed programming in the
saturated region was developed.

This leaves us with reliability.  Unlike Fowler-Nordheim
Tunneling, used for programming in addition to erase in
some versions of flash memories and subject to erratic
programming due to the presence or absence of as few as
one or two holes trapped in the oxide[4], channel hot-
electron programming has no erratic programming
mechanism.  The programming threshold in saturation is
simply a linear function of the applied control gate
voltage.  Programming in this region can be forced into an
unstable operating point, known as impact-ionization
induced latch-up[5].  This is the point where an excess of
holes in the silicon substrate, created by the collisions of
the energetic electrons with the silicon lattice, build up to
the point where the parasitic NPN transistor in the silicon
substrate turns on.  Proper architectural design of the
silicon process flow (i.e., use of EPI silicon) can easily
prevent this from happening.

Therefore, the three success criteria are satisfied by
exploiting stable device operation regions, namely
programming in saturation. Now, a simple placement
algorithm was chosen for implementation (outlined in the
flowchart in Figure 10).  The algorithm consists of the
simple loop of programming in saturation, checking the
cell Vt to determine if the desired state has been reached,
stopping if the desired state is reached, or if not,
incrementing the control gate voltage and providing an
additional programming pulse and continuing in this
fashion until the desired Vt has been achieved.  In the
Intel StrataFlash™ memory two bit per cell device, each
programming pulse within the placement algorithm will
transfer roughly 3,000 electrons of charge to the floating
gate.



Intel Technology Journal Q4’97

6

Set Initial
Programming
Parameters

Determine cells
requiring placement, give
programming pulse for
saturated regime

Has cell
Reached
Desired Vt
(Charge)
Level? Done

Yes
No

Increment
Control Gate
Voltage

Figure 10: Placement algorithm flowchart

Precise Charge Sensing

As can be seen from the flowchart in Figure 10, integral to
the placement algorithm is a means of detecting whether
or not the desired cell Vt has been achieved.  Without a
precise means of sensing the floating gate charge, precise
charge placement would not be possible.  A look back at
Equation 2, the cell drain current-voltage relationship,
gives some insight into what is required to achieve precise
charge sensing.  Control gate and drain voltage control
and process Leff, Zeff, mobility and oxide capacitance
control are important aspects of precise charge sensing.
Drain voltage control is facilitated by direct access to the
cell drain junction (bypassing any resistive IR drops)
allowable in the ETOX NOR flash memory array
architecture; and by applying a high enough drain voltage
to operate in the saturated mode (normal MOS device
saturated I-V, not programming saturation as previously
discussed) where drain bias variations have minimal
current impact.  Process control is important, since the
33,554,432 memory cells contained within a single Intel
StrataFlash memory 64Mbit device represent a >10 sigma
variation, and is achieved by proper process architecture
and manufacturing process control, derived from the ten
years of manufacturing experience with flash memories.
Control gate voltage control is achieved by an on-chip
read regulation circuit, which is fully explained in a later
section.

Flash memory has a unique feature associated with its
non-volatility:  the data write (placement) can occur under
one condition of ambient temperature and system power
supply, while the read out of data (sensing) can occur at a
later date, at different ambient temperature and system

power supply.  Being fundamentally a MOS transistor, the
flash cell’s drain current is a function of these ambient
conditions.  As such, the precise charge sensing is
required to span wide ranges of operation.  To facilitate
this needed precision, the reference levels that separate
charge state levels are generated by reference flash cells
contained on-chip.  These reference cells, whose Vt levels
are precisely placed at manufacturing test under a
controlled environment, will have the same tracking with
temperature and power supply as the array flash cells.
This contrasts to reference levels generated by other
transistor types (i.e., NMOS or PMOS), which have
different temperature, voltage, and process tracking than
the flash memory cell. This lessens the necessary
constraints on the read regulation circuitry.

Precise Charge Retention

Due to the non-volatility requirement of flash memory, it
is important that any charge placed on the floating gate
remain intact for extended periods of time, typically ten
years.  This translates to a requirement of not losing more
than one electron per day from the floating gate.  If
electron loss occurs from even one memory cell in an
array of millions, the data will be corrupted. The inherent
storage capability exists due to the Si-SiO2 energy barrier
which traps electrons on the floating gate. The inter-poly-
silicon oxide (ONO film mentioned in the cell structure) is
processed to maximize charge storage capabilities[6].
Under normal circumstances, the energy barrier allows
charge storage for hundreds of years.  There are
conditions of trapped oxide charge, known as intrinsic
charge loss[7], which can cause one-time shifts in
threshold.  These shifts are rather small and are
compensated for during manufacturing test.  Random
defects in the insulating oxides that can lead to charge loss
are less of an issue with low-defect, high-yielding process
technologies, but if still present, are screened out by the
manufacturing tests.  These defects are driven to low
enough levels on ETOX flash memories where error-
correcting-codes (ECC) are not needed. The remaining
concern for charge retention is any degradation to the
insulating oxides that occurs as a result of the stresses of
device operation.

During normal operation, high fields are applied to the
flash cell.  The presence of the high fields over time can
degrade the charge storage capabilities of the device, by
effectively lowering the energy barrier, or by providing
traps sites in the oxide that can act as intermediate
tunneling locations. The benefit of channel hot-electron
programming, compared to tunneling for programming, is
that fast programming can occur at lower internal fields
thereby lessening the probability of oxide damage.
Nevertheless, occurrence of damage needed to be
understood to ensure the stability of the M.L.C. charge.



Intel Technology Journal Q4’97

7

Consequently, the charge retention ability of the insulating
oxides under various process and bias field conditions
were studied in great detail.  Over the course of the four
year M.L.C. development period, in excess of 200 billion
(2e1011) flash cells were studied for charge retention, each
to a resolution of floating gate charge of ~100 electrons.
This exhaustive study provided more physical insight into
the oxide damage mechanisms and has enabled us to build
large scale empirical models for charge retention.  The net
result of this study was the ability to optimize process
recipes and operating bias fields to maximize charge
retention.  This allows Intel StrataFlash memory to
maintain high reliability performance, without the use of
any ECC.

Mixed Signal Design Implementation

The implementation of the described charge-placement
algorithm and charge-sensing operation required a mixed
signal circuit design of both digital and precision analog
voltage generation, regulation and control circuits.  The
placement algorithm is executed by utilizing an on-board
control engine, or the Flash Algorithmic Control Engine
(FACE). FACE runs the placement algorithm by
sequencing through the programming and sensing loops.
During a read operation (sensing of data at a later time),
the user has random access to the memory array.  A read
operation performs a precision-sensing operation and
invokes circuitry controlling the precise cell bias voltages.

Placement Algorithm Implementation

The placement algorithm executed by FACE is stored in a
small on-chip programmable flash array.  The
programmable microcode allows for flexibility in
algorithm changes.  FACE, illustrated in Figure 11,
consists of the microcode storage array, program counter
(PC), arithmetic logic unit (ALU), instruction decoder,
clock generator, register files, and input/output circuitry.
FACE uses 6,000 transistors for logic and 32k bits of flash
memory for algorithm storage.

To describe the implementation of the placement
algorithm, let us assume that a group of cells (i.e., a
double-word, or 32-logical bits, 16-physical cells) is to be
placed and is initially in the erased state (lowest floating
gate charge state). Any cells not to remain in the erased
state (representing logical data “11”) will receive a
programming pulse.  FACE will look up the drain and
initial control gate voltage stored in a permanent read-only
register located on-chip.  FACE will then set the control
gate voltage through the digital to analog converter
(DAC).  The DAC circuit receives the FACE digital input
and divides the on-chip generated 12-volt power supply
(VP12) to achieve the desired control gate voltage for that
particular programming pulse.  The drain voltage, used

during the programming pulse, is generated from a
regulation circuit that sets the gate voltage on a source
follower.  FACE will continue to supply the programming
voltages for the pre-determined amount of time sufficient
to reach the saturation region.  When the programming
pulse is complete, FACE will reconfigure the circuits to
perform the sensing portion of the algorithm, an operation
called verification.  The drain and control gate voltages
are now set to the same values as used in a user read
access to ensure common mode between verification and
read.  FACE will take the result of the verification and
determine which cells have reached their destination
charge level and which have not. Those that have not will
require an additional programming pulse with an
increased control-gate voltage.  A cell that no longer
requires additional programming pulses will have the
drain voltage disabled by the program pulse selector
circuit.  This sequence of events continues until all cells in
the double-word have completed programming.

Analog Circuit Blocks for Precise Charge Placement

Placement requires precision voltages covering a range of
4-12 volts, while the chip Vcc (user supplied voltage) is
kept at a typical value of 5 volts.  The voltages applied to
the memory array need to be internally generated and
precisely regulated.  On-chip voltage generation is
achieved by use of charge pumps, in which switched
capacitors boost the user-supplied Vcc to higher values.
Voltages are controlled using a precision voltage
reference circuit and voltage regulation circuits (Figure
11).

During a programming pulse, two charge pumps are used.
One charge pump generates the internal 12V supply
(VP12).  This is used to supply a precision control gate
voltage to the flash cells, through the DAC circuit.



Intel Technology Journal Q4’97

8

VP12

FACE

Voltage Generation and Regulation
Circuits

VP9

Sample
and
Hold

Vref

Charge
Pump

Regulation
Circuit

DAC

Row
Decode

Flash
Memory

Array

Column
Selector

Program
Pulse Selector

Charge
Pump

Read
Circuits

Write
Regulator

Control
and
I/O

 RegistersInput / Output

IR

ALU

Reg File

Code Store
Flash Array

PC

Figure 11: FACE and placement operation block diagram



Intel Technology Journal Q4’97

9

VP12  also serves to generate the precision flash drain
voltage through the write regulation circuit (WRC).  The
WRC generates a voltage that is applied to an NMOS
transistor configured as a source follower.  This
transistor is in the bitline (or drain) path of the flash cell.
The flash cell drain current is supplied through a second
pump that generates the signal VP9.  This pump is
required to supply the programming current for up to 32
flash cells at a time.

During the placement algorithm, voltage stability is
critical to precise charge storage.  Any variations in the
reference circuit voltages will be seen as variations in the
flash control gate voltage, to which the programming
saturated Vt is directly related. To achieve this absolute
stability in the voltage reference circuit, a sample and
hold circuit is employed.  At the start of the placement
algorithm, the sample and hold circuit samples the
reference voltage and holds the value on a capacitor
during the running of the entire algorithm. This
guarantees the control gate voltage varies from pulse to
pulse by only the desired step value and not by any
additional components.

Circuit Blocks for Precise Charge Sensing

When the device is in the read mode of operation, FACE
is disabled and the user has control to access the memory
array.  A read operation consists of sensing 16 bits worth
of data from a random location in the memory array.
With M.L.C., 8 flash cells are used to obtain 16 bits of
data.  During the read operation (Figure 12), the flash
cell control gate voltage is controlled through a read

regulator circuit (RRC).  Minimizing this voltage
variation will minimize the variations in cell current
(Equation 2).  This allows for more precise measurement
of the charge level stored on the floating gate. Drain
voltage stability is also important to ensure that the flash
cell being sensed has a high enough drain voltage to
keep the memory transistor operating in the saturated
region of the MOS I-V.

Due to fluctuations in user supplied Vcc and a lower
value than may be needed during read,  an internal
voltage charge pump is used during a read operation to
generate the internal voltage to supply the flash cell
control gate. The RRC uses the same voltage reference
circuit that is used for voltage regulation during a
placement operation, as mentioned above. However, in
the case of a read operation, not as much voltage
stability is required so the sample and hold circuitry is
not used.

Parallel Charge Sensing

High speed random access and precise charge sensing
are accomplished through a parallel charge-sensing
scheme. Through direct connections to each memory
cell, the data read operation determines the level of each
memory cell quickly, accurately, and reliably. The data
read operation senses which of the four levels the
memory cell falls within based on the threshold voltages
of  three  reference cells. This is done simultaneously
with three sense amplifiers (Figure 13), where each sense
amplifier compares the flash cell current being sensed to

Vread

16

Read Mode Gate Voltage Generation and Regulation

Row
Decode

Flash
Memory

Array

Column
Selector-

+Vref

Charge
Pump

Drain Bias Circuits

Sense AmplifiersOutput
Buffers

8

8

Drain Bias
Reference
(Vdbref)

Figure 12: Read operation block diagram



Intel Technology Journal Q4’97

10

the current of the flash reference cells.

The memory cell and the reference cells are biased in
such a way that each conducts a current (Icell and Iref)
proportional to their respective threshold voltage (Vt and
VtRef). During a read operation, Vread is placed on the
control gates of the memory and reference cells, the
source terminals are grounded, and the drain voltages are
set through a bias circuit that utilizes a precision voltage
reference circuit.

The current for the memory cell being sensed is
compared to the current of the three reference cells. The
memory cell and reference cell current is converted to a

voltage through an active load transistor. The resultant
voltages are compared by the three sense amplifiers. A
sense amplifier is associated with each of the three
reference cells.  Each sense amplifier also has an input
from the flash cell being sensed. If the current of the cell
being sensed is greater than the current of the reference
cell (Icell > Iref or Vt < Vtref,), the sense amplifier
output is a logic “1.” If the current of the cell being
sensed is less than the current of the reference cell, the
sense amplifier output is a logic “0.”  The outputs of the
three sense amplifiers are connected to a logic circuit
that interprets the two data bits in parallel.

Cell Vt

Output
Sense
Amp 1

Output
Sense
Amp 2

Output
Sense
Amp 3 D1 D0

 Vt < VtR1 1 1 1 1 1
VtR1 < Vt <VtR2 0 1 1 1 0
VtR2 < Vt <VtR3 0 0 1 0 1
Vt >VtR3 0 0 0 0 0

D1D0

Iref3Iref2Iref1Icell

Sense
Amp

3

Sense
Amp

2

Sense
Amp

1 - +

Drain
Bias

Drain
Bias

Drain
Bias

Drain
Bias

- + - +

Logic
Circuit

Reference
Cell Array

Flash
Cell Array

Figure 13: Parallel charge sensing



Intel Technology Journal Q4’97

11

Low-Cost Design Implementation

Traditionally, a storage element in a memory
corresponds to one bit of information. To double the
amount of memory, the memory array or memory
storage elements would need to be doubled. In addition
to doubling the number of memory elements in the array,
certain memory interface circuits must also be doubled.
In particular, the memory array needs to be decoded
requiring wordline and bitline decoders. In a typical
single transistor non-volatile memory device (flash,
EPROM), approximately 20% of the silicon area used is
due to these interface circuits required to access the
array.  These interface circuits typically do not scale with
process technology at the same rate as the memory array
because they have high voltage and analog requirements.

Intel StrataFlash memory doubles the storage capacity of
a memory device without doubling the memory array
and the associated interface decoding circuitry.
Additional circuitry is required to achieve the multiple
bits per cell, but takes up a relatively  small additional
area. The additional overhead for circuitry is due mostly
to the additional sense amplifiers, reference circuitry,
and circuitry for voltage generation or charge pumps.
The additional silicon area required for this circuitry
represents only an additional 5% over what is necessary
for a one bit per cell device. Implementations of M.L.C.,
which require externally supplied components (i.e.,
microcontroller, ECC, and voltage regulators), have the
cost savings of M.L.C. diminished by these peripheral
overheads.  Intel StrataFlash memories achieve 2x the
density at very close to 1x the area.

Low-Cost Process Manufacturing

ETOX  flash memory has a long manufacturing history.
As such, it was necessary that any implementation of
M.L.C. not disrupt that history by having unique process
requirements, which would cause a slow yield learning
period or poor manufacturing throughput. First and
foremost for M.L.C. to be successful, it must be able to
ride on a technology that produces error-free one bit per
cell flash memory. This requirement throughout Intel’s
ETOX NOR flash memory’s history has resulted in tight
manufacturing margins and the learning necessary for
achieving such margins.  Memories that rely on ECC for
even one bit per cell operation have little margin built
into the basic technology. Throughout the previous
discussions, mention has been made of process
manufacturing attributes for M.L.C.  These attributes
have been achieved by utilizing the same process flow as
the standard one bit per cell flash memory.  This

approach has maintained shared learning and has lead to
lower costs.  In other words, low-cost process
manufacturing was achieved through an understanding of
M.L.C. requirements up-front in the design of the basic
process architecture at the generation where M.L.C. is
introduced. The tight manufacturing margins required
for M.L.C. are a natural extension of the learning from
manufacturing of error-free one bit per cell flash
memory and are well within the manufacturing,
equipment, and process module capability.

Standard Product Feature Set

One of the main challenges in implementing M.L.C. is
maintaining product performance, usability, and
reliability at the same levels as standard flash memories.
If the implementation of M.L.C. resulted in a product
that did not satisfy these goals, it would be relegated to a
niche in the marketplace.  Key features for a non-volatile
memory are programming speed, read speed, power
supply requirements, and reliability.  This paper shows
how our implementation of M.L.C. achieves these
features.  Before finishing, however, let us briefly
discuss each one of them.

Programming Speed

Programming speed is achieved by choosing a placement
algorithm that exploits stable device operating points to
enable circuit performance optimization to occur, with
little limitations of flash device operation.  Parallel cell
programming (32 cells, or 64 bits) at a time also
amortizes the placement algorithm run time. The choice
of charge sensing approaches also affects programming
speed as it is integral to the placement algorithm.
Sensing approaches other than those described in this
paper can be used.  An example would be a sensing
scheme that varies control gate voltage to detect the
threshold voltage directly.  Such a scheme, while a more
direct measure of floating gate charge, does not exploit
the current drive capability of the flash cell, the drive
used for sensing speed performance.  To sum up, the
choices of algorithms, optimizations, and architecture
are what allow M.L.C. programming to be as good or
better than one bit per cell flash memories.

Read Speed

As mentioned above, the choice of fixed control gate
sensing and utilization of the flash cell’s current drive
capability allows fast read operation.  In addition,
parallel charge sensing allows for fast decode of the
logic level, with little circuit overhead.  As such, the read
speed of Intel’s StrataFlash memory is consistent with
that of one bit per cell flash memories of comparable bit
density.



Intel Technology Journal Q4’97

12

Power Supply

As also discussed, the on-chip voltage generation and
regulation is key to the implementation of M.L.C.  One
could specify an M.L.C. product that uses externally
supplied precision voltages, but such a product would be
more costly to the user, who would have to pay for the
power supply, memory, and board space.  Having the
voltages generated and regulated on-chip allows for the
Intel StrataFlash memory to plug directly into existing
flash memory applications.

Reliability

Starting with high-yielding, low-defect memory,
exhaustive cell studies and process and bias
optimizations allow for an implementation of M.L.C.
that achieves non-volatility and high reliability without
requiring on-chip or system ECC.  Thus the user can
interface to the device with random memory location
access, without latency for correction.  Additionally,
ECC requires overhead bits, which would diminish the
cost advantages of M.L.C.

These standard flash memory product features, coupled
with low-cost circuit design and manufacturing process
implementation allow users to benefit from the low cost
of M.L.C. without having to sacrifice needed features or
performance.

Conclusion
It has been shown how Intel StrataFlash memory
achieves multiple bits per cell, coupled with traditional
process scaling, to provide an advance in memory cost
reduction.  The M.L.C requirements of precise charge
placement, precise charge sensing and precise charge
retention are achieved by exploiting stable device-
operating points and direct access to the memory cell,
employing mixed signal digital and analog design. Non-
cell-related costs are held low by riding on the tight
manufacturing margins developed for error-free one bit
per cell flash memories.  A standard product feature set
ensures that the cost advantages of M.L.C. are available
to the mainstream flash memory market.

Acknowledgments
The authors would like to thank the members of the
M.L.C. development groups, whose dedicated work
helped turn a few ideas into a product reality.

References
 [1] Kynett, V.N., et. al., “An In-System

Reprogrammable 256K CMOS Flash Memory,”
Technical Digest IEEE International Solid State
Circuits Conference, 1988, pp. 132-133.

 [2] Tam, S., Ko, P.K., and Hu, C., “Lucky-Electron
Model of Channel Hot Electron Injection in
MOSFET’s,” IEEE Transactions Electron Devices,
September 1984.

[3] Lenzlinger, M. and Snow, E.H., “Fowler-Nordheim
Tunneling into Thermally Grown SiO2,”  Journal of
Applied Physics, vol. 40, No. 1, January 1967, pp.
278-283.

[4] Ong, T.C., et. al., “Erratic Erase in ETOXTM Flash
Memory Array,” IEEE VLSI Symposium, 1993, p.
145.

[5] Eitan, B. and Frohman-Bentchkowsky, D.,  “Surface
Conduction in Short-Channel MOS Devices as a
Limitation to VLSI Scaling,” IEEE Transactions on
Electron Devices, vol. ED-29,  No. 2, February 1982,
pp. 254-266.

[6] Wu, K., et. al., “A Model for EPROM Intrinsic
Charge Loss Through Oxide-Nitride-Oxide (ONO)
Interpoly Dielectric,” 28th Annual Proceedings IEEE
International Reliability Physics Symposium, 1990,
p. 145.

[7] Mielke, N., “New EPROM Data-Loss Mechanisms,”
21st Annual Proceedings IEEE International
Reliability Physics Symposium, 1983, p. 106.

Authors’ Biographies
Al Fazio is a Principal Engineer in Flash Technology
Development. He received a B.Sc. in Physics from the
State University of New York at Stony Brook in 1982
and joined Intel the same year. He has been involved in
development programs including SRAM, EPROM,
E2PROM, NVRAM, and Flash Memories.  He was
responsible for the Technology Development of the Intel
StrataFlashTM memory.  He holds more than a dozen
patents and has authored or co-authored several
technical papers, two of which have received
Outstanding Paper Awards at the IEEE International
Reliability Physics Symposium and at the IEEE
International Solid State Circuits Conference.  He is
presently responsible for Intel’s Multi-Level-Cell and
Advanced Flash Memory Cell Development and
currently serves as General Chairman of the IEEE Non-
Volatile Semiconductor Memory Workshop.  His e-mail
address is al_fazio@ccm.sc.intel.com



Intel Technology Journal Q4’97

13

Mark Bauer is a Senior Staff Engineer in Flash Circuit
Design. He received his B.S.E.E. from the University of
California, Davis in 1985.  He joined Intel’s Memory
Components Division that same year, working on
EPROM design.  He was responsible for Circuit Design
Development of the Intel StrataFlashTM memory.  He
holds more than a dozen patents in the field of non-
volatile memories and has authored two technical
papers, one of which received an Outstanding Paper
Award at the IEEE International Solid State Circuits
Conference.  He is presently responsible for Intel’s next
generation Multi-Level-Cell Circuit Design.  His e-mail
address is mark_bauer@ccm.fm.intel.com



1

Redundancy Yield Model for SRAMS

Nermine H. Ramadan, STTD Integration/Yield, Hillsboro, OR, Intel Corp.

Index words: Poisson’s formula, yield, defect density, repair rate

Abstract

This paper describes a model developed to calculate the
number of redundant good die per wafer. A block
redundancy scheme is used here, where the entire
defective memory subarray is replaced by a redundant
element. A formula is derived to calculate the amount of
improvement expected after redundancy. This
improvement is given in terms of the ratio of the overall
good die per wafer to the original good die per wafer
after considering some key factors. These factors are
memory area, available redundant elements, defect
density and defect types with respect to the total reject die
and defect distribution on the memory area. The model
uses Poisson’s equation to define the yield, then the
appropriate boundary conditions that account for those
factors are applied. In the case of a new product, knowing
the die size, memory design, and total die per wafer, the
model can be used to predict the redundancy yield for this
product at different initial yield values. Optimizing the
memory design by varying the number of memory blocks
and/or redundant elements to enhance redundancy is also
discussed. The model was applied to three products from
two different process generations and showed good
agreement with the measured data.

Introduction
Due to the continuing  increase in  the size of memory
arrays, reaching a high yield from the same wafer is
more challenging than ever. Redundancy is a way to
improve the wafer yield and to reduce the test cost per
good die by fixing potentially repairable defects. In order
to forecast the volume of a certain product when
redundancy is applied, it is important to estimate, as
accurately as possible, the number of die gained after
redundancy.

Redundancy is the process of replacing defective circuitry
with spare elements. In SRAMs, rows and/or columns
can be replaced, as well as an entire subarray. In a

previous study[1], a redundant yield estimation
methodology was developed. It is applicable to row,
column or block redundancy schemes. It distinguishes
between repairable and non-repairable faults within a
memory block.  In order to apply this method, new CAD
tools are required.  This method is useful if row or
column redundancy is  used.

This paper will focus only on the yield estimation for
block redundancy, as block redundancy  was preferred
over row and column redundancy for the SRAM
architecture. It is usually easier to replace the entire
subarray. This might seem like overkill; however,
replacing the entire subarray  allows for the replacement
of defective peripheral circuits in addition to just the
memory array elements. It also allows for the
replacement of  multiple bad bits, or other combinations
of failing bits, rows and columns.

A yield multiplier M is defined as the ratio of the total
good die after redundancy to the original good die per
wafer,  or

M = total redundant good/original good        (1)

so that the redundant yield , Yred , is given as

Yred  =  M  x  Y                                              (2)

where Y is the initial yield. Forecasting of the
redundancy yields is based on how accurately the factor
M is calculated. A formula for M was obtained by using
the correlated defect model. According to this model, an
expression for the yield of die containing a number of
defects, I, is given by

yI={(n+I+1)! x (DA)I}/{(I! nI -1)x(1+D A/n)n+I} x fI     (3)

where
yI = yield of a die with I defects



Intel Technology Journal Q4’97

2

D = average defect density ( #/cm2 )
A = die area (cm2 )
n= correlation factor between defects
f = fraction of the die area that contains the
defects

The yield of die with zero defects can be obtained by
setting I = 0  and f = 1 as

Y = 1 / { 1 + (A D / n) }n                  (4)

With n = 4 and using equation (4) to substitute for the
defect density, equation (3) becomes

       yI= Y  x ((I+3)(I+2)(I+1) /6) x fI x ( 1-Y 1/4) I         (5)

Introducing g as the fraction of repairable defects, g
varies depending on the number of repaired defects. An
expression for M was obtained  by summing yI  over the
ratio of correctable defects  and substituting in (2)

M = 1 + kΣI = 1 ((I+3)(I+2)(I+1) /6) x( g f ( 1-Y 1/4)) I     (6)

M was calculated by entering arbitrary values of g and f
in equation (6). However, there was no evidence to
support the values of the repairable defect density
represented by g used to  calculate M.

Another formula was used to estimate the yield multiplier
M .  The yield is derived from Poisson’s equation [2]

Y  =  exp ( -AD )   (7)

Instead of using a constant defect density, D, Murphy
assumed several defect density distributions[3]. The most
preferred distribution was a Gaussian. Stapper used a
gamma distribution, which led to the following yield
formula [4]

 Y = 1 / { 1 + (A D / α) }α   (8)

where α is the average value of the coefficient of
variation for the gamma function. The yield multiplier
derived from the previous yield formula is given by

M =  S x ( 1 + 0.01 ( L + I ) Asb D / k ) k  (9)

where
S = fuse programming success rate

              I = number of redundant elements
L = number of subarrays
Asb = area of subarray ( mm2 )
k = constant for MOS process

0.01=conversion from mm2 to cm2

This simple formula is actually overestimating the
redundancy improvement, since it assumes that all the
defects are repairable.

In order to get a better estimate of the yield improvement,
the nature and distribution of the defect need to be
understood. These are taken into account  in this model.
When considering defects, it is important to realize that
not all reject die are repairable: a die failing for a short,
for example, cannot be repaired. Also the number of
defective subarrays that could be repaired depends on the
available redundant elements per memory block. This
means that having more than one defect per die requires
a certain distribution of those defects in order for
redundancy to be successful.

Taking into account the above factors and using
Poisson’s equation to describe the yield, the present
model was able to predict the redundant yield within the
same range as shown by the real data. The following
section illustrates how the key parameters affecting
redundancy are used to develop the model.

SRAM Array Layout
Figure 1 shows the layout of a SRAM memory array.
Before going into details, the following terms are defined
as they will be used throughout the paper:
• Subarra y. This is a unit array of the memory area,

and  is shown as subarrays 0 to 72 in Figure 1.
• Memory block or bloc k. This is a segment of the

memory area, and  is one of four rows shown in
Figure 1.

• Redundant element or elemen t. This is a spare
subarray used to replace a memory subarray, and  is
given as subarrays R in Figure 1.

 
 The die consists of two areas:
• Repairable are a. This includes all the circuitry in

the subarray. In this model the repairable area is the
sum of the areas of the memory subarrays.

• Non-repairable are a. This includes the periphery
area. The redundancy elements are also considered
part of the non-repairable area.

 
 Block redundancy is illustrated in Figure 1. The defective
subarray “4” is replaced by the redundant element R  in
the same memory block. This is done by programming
the right fuses and shifting the array assignments.
 



Intel Technology Journal Q4’97

3

 

SRAM Array Layout

I/O 0 0 1 2 3 4 5 6 7 8 R 17 16 15 14 13 12 11 10 9 I/0 1

I/O 2 18 19 20 21 22 23 24 25 26 R 35 34 33 32 31 30 29 28 27 I/0 3

I/O 4 36 37 38 39 40 41 42 43 44 R 53 52 51 50 49 48 47 46 45 I/0 5

I/O 6 54 55 56 57 58 59 60 61 62 R 71 70 69 68 67 66 65 64 63 I/0 7

SRAM Array Layout

I/O 0 0 1 2 3 4 17 16 15 14 13 12 11 10 9 I/0 1

I/O 2 18 19 20 21 22 18 18 18 18 R 35 34 33 32 31 30 29 28 27 I/0 3

I/O 4 36 37 38 39 40 36 36 36 36 R 53 52 51 50 49 48 47 46 45 I/0 5

I/O 6 54 55 56 57 58 54 54 54 54 R 71 70 69 68 67 66 65 64 63 I/0 7

4 5 6 7 8

 
 Figure 1: SRAM array layout used in the model

 

 Definitions
• Yield Equation:
 The yield model used here is Poisson’s yield model [2]

 Pn   = { λ n   exp ( - λ ) } / n ! (10)
 
 where

 Pn  =  the probability of n defects on a die of area
A and defect density D
 λ   =  A D

 
 Defining the failure probability as the probability that a
die has one or more defects as
 
Fn   =  ∑∝

1  { λn   exp ( -  λ ) }/  n ! = 1 - exp ( -  λ)      (11)

 
 and defining the yield as the survival probability
 
 Sn   = 1  - Fn               (12)

 the yield equation is then
 
 Y=  exp ( -  λ) = exp ( -AD ) (13)
 
 
• Improvement Factor:
 The improvement factor is defined as
 

 M =  (Ngd + Nrep) / Ngd  (14)
 where
 Ngd = initial number of good die per wafer
 Nrep = number of repaired die per wafer
 
 Using Poisson’s formula to derive an expression for Ngd
and Nrep, Ngd can be defined as the number of die with
zero defects
 
 Ngd  = N exp ( -  λ)             (15)
 
 where N is the total number of tested die. An expression
for Nbd is given by
 
 Nbd  = N ( 1  -  exp ( -  λ) )            (16)
 
 which is the number of die with one or more defects.
Assuming all bad die are repaired, Nrep is then equal to
Nbad, and a formula for a maximum improvement factor
is given by
 
 Mmax  = exp ( -  λ)              (17)
 
 However, this in fact is not the case; therefore, Nrep
needs to be represented by a more realistic formula. The
model described in this paper started with a simple
assumption and more details were gradually added to get
as close as possible to the real case. The following section
illustrates this development.
 
 

 Yield Improvement Formula
Simple Model
 As a first approach, Nrep is represented by the number of
die with one defect, and Poisson’s formula is used again
to describe Nrep(1) as
 
 Nrep(1) = N  λ   exp ( -  λ )                (18)

 
 Substituting the improvement factor formula, equation
(14)
 
 Msimp = 1 + λ                            (19)
 
 As mentioned before, not all the die area could be fixed;
only the memory area was repairable. Instead of A, the
total area, Arep, is used in the expression of λ, where
 
 Arep = Farea  x   A              (20)
 
 and Farea  is the fraction of the repairable area. Since only
random defects can be fixed by redundancy, the random



Intel Technology Journal Q4’97

4

defect density is used in the expression of λ, where D is
found from the yield equation, equation (13),  as
 
 D =  - ln Y /A               (21)
 Here Y is the random yield and is given by Y = Ngd/N
and is calculated from the data. Using Arep instead of A,
the expression for λ  that will be used for the rest of the
analysis is then
 

 λ = Farea  x   A D               (22)

Cumulative Model
 Next, a better definition of Nrep is obtained: the number
of die with one, two, or n defects. Poisson’s equation is
used to derive a formula for the number of die with a
certain number of defects. Since
 
 Pn =  { λn   exp ( -  λ )  }/  n !              (10)
 
 where n is the number of defects, the following
improvement factors can be defined:
 
 M1 = improvement factor from die with one defect
 M2 = improvement factor from die with two defects
 Mn = improvement factor from die with  n defects and is
equal to
 
  Mn = 1 + Σ Nrepn / Ngd              (23)

 where
 

 Σ Nrepn =  N Σ { λI exp( -λ } /  I !                (24)
 from  I = 1 to  I = n
 
 The improvement factors are then given by
 
 M1=1+λ………………………………1 def/die
 M2=1+λ+(λ)2/2!……………………...2 def/die
 
 and for n defects per die
 
 Mn= 1+λ +( λ ) 2 / 2!  + ( λ ) 3 / 3! + …+ ( λ ) n / n!    (25)
 
 Since there is a possibility of having more than one
defect per block, λ must be multiplied by a so-called
repair probability Rn, where Rn  is the ratio of the
combination of blocks and defects that can be repaired to
the total number of combinations. This depends on the
available number of redundant elements. Mn is then
written as
 

 Mn= 1+ R1 λ + R2 ( λ ) 2 / 2! + R3 ( λ ) 3 / 3! + …
         + Rn( λ ) n / n!              (26)
 
 An expression for Rn is found by using a binomial series
expansion. If G = X + Y, where X and Y represent the
number of blocks, the resulting binomial series is
 
 G n  = ( X + Y ) n  = X n  + n X n-1  Y + n C 2 X n-2 Y 2 + …
+ n C k X n-k Y k  + Y n               (27)
 
 with
              n C k = n !/ k ! ( n-k ) !                                   

(28)
 
 as the coefficient of X. Note that this coefficient
represents the number of terms with X raised to a certain
power, where this power represents the number of defects
on this block.
 
 If G contains more than two terms, or more than two
blocks, G is the written as
 
        G = X + Y + Z + … up to b blocks
 
 and the series becomes
 
 G n  = ( X + Y + Z +.. ) n  = X n  + n X n-1  Y + n X n-1  Z
+ n X n-1  … + n C 2 X n-2 Y 2 +  n C 2 X n-2 Z 2 + ... + n C k

X n-k Y k  + n C k X n-k Z k  +… + Y n + Z n + …          
(29)

 
 Knowing that each redundant element, e, can fix one
defect, a term raised to the power of e+1 or higher
indicates that it has more defects than elements and it
cannot be fixed. This means that the number of possibly
repaired blocks is equal to the total number of blocks and
defect combinations minus the sum of coefficients of the
terms raised to the  power of e+1 or higher. All terms can
be treated similarly, since all blocks are equal, and terms
raised to the same power are collected together. Their
coefficients can then be added together as well. Each
coefficient in the previous series is repeated b-1 times for
b terms. Except for the highest power in the series,  it
exists only b times.  This means that the sum of
coefficients can be written as
 

 sum = Σ b ( b - 1) ( n - k )  n ! / k ! (n - k )!      (30)
 
 from  k=1 to k = n, the number of defects. The number of
repairable blocks is then
 
 G rep  =  ( b ) n  -  Σ b ( b - 1) ( n - k )  n ! / k ! (n - k )!
 from k = e+1 to k = n  and  n ≥ k always



Intel Technology Journal Q4’97

5

 
 From the definition of Rn, the total combination of blocks
and defects can be given by bn. The repair probability is
the ratio of the possibly repaired count to the total count,
or
 
 R n  = G rep / b

n

   = {( b ) n - Σ b (b - 1) ( n - k ) n ! / k ! (n - k)! }/( b) n  (31)
 
 and the formula for the cumulative improvement factor is
 
 Mn= 1+R1 λ+R2 (λ) 2 / 2! + … + Rn(λ ) n/ n!            (32)
 
 Note that this formula is applicable to up to e x b defects,
which is the total number of elements and blocks; beyond
that it is not useable. Higher order terms in the series are
also negligible and can  be ignored without affecting the
improvement factor.
 
General Model
 A general model is developed by including the effect of
defect type in the previous improvement factor formula.
The cumulative model is in fact overestimating the real
data, because it assumes that all die are repairable.
Studying the reject die data, it was found that only
certain die could be fixed, namely raster type bins which
occupy a certain fraction of the total reject die population.
Adding to this the other restriction of obeying the
previously described repair probability, only a certain
fraction of those die is repairable. An efficiency factor η
is introduced into the cumulative model.  It is defined as
the effective fraction of bad die repaired extrapolated at
the maximum yield for a certain repairable area. It is
calculated from
 
      η =  γ  / Farea (33)
 where

 γ = ( Nbd_cr/ Nbd)  x (Nrep / Nbd_cr )
 Nrep = number of repaired die
 Nbd = number of reject die
 Nbd_cr = correctable reject die

 
 which cancels out in the expression of γ. λ  is then
modified to
 

λλ =   η Farea   x A  D (34)

which is then used in the general model

Mn= 1+ R1 λ+R2 (λ) 2 / 2! +… + Rn(λ ) n/ n! (35)
This is  the same as the cumulative model formula,
equation (32),  except for the expression of λ. γ is

obtained from the empirical data, so that one value of γ
can be used for products from the same process
generation. For a new process, γ  from a previous process
can be used, since its value is close from one process to
the other.

Redundant Elements and Memory Blocks
Optimization

In this section, how the number of redundant elements
and memory blocks affects the yield improvement is
studied. Increasing the number of spare elements
increases the chance of repair. However, this impacts the
repairable area, since the total area increases, while the
repairable area is fixed. The dependency of the
improvement factor on both the number of redundant
elements and the repairable area is studied in order to
check the possibility of improving redundancy by varying
these two factors.

Since the improvement factor is a function of the
repairable area and the defect density, and since the
defect density is also a function of the area as calculated
from the yield equation, equation (21), this equation is
used to substitute for D in the expression for λ, equation
(34), as

λ = η Farea x (A D) = - η Farea x ln Y
(36)

The  total die area is then written as

A = Arep + Anrep +  4 x Ael (37)

where Arep is the repairable area and is equal to the area
of the  subarrays,  Anrep is the area of the die circuitry,
and Ael is the redundant element area and is equal to the
subarray area. Increasing the number of redundant
elements by sets of 4,  the total area is

A = Arep + Anrep + 4 x e x Ael (38)

where “e” is the number of elements/block. The fraction
of the repairable area is then

           Farea = Arep / (Arep + Anrep + 4 x e x Ael)            
(39)

and

λi  = - η Arep ln Y / ( Arep + Anrep + 4 x I x Ael) (40)



Intel Technology Journal Q4’97

6

To study the behavior of the improvement factor with e
and Arep , start with the  general yield improvement
factor formula, equation (35)

Mn= 1+ R1 λ +R2 (λ ) 2 / 2! +R3 (λ) 3 / 3!+ … +Rn(λ) n / n!

In the case of adding extra redundant elements, the die
area, and hence λ, is also changing, so that for each case
with a certain number of elements the value of λ is
different.  The improvement factor formula is written as

1 element, n defects:
Mn,1= 1+ R1λ1+R2 (λ1)

 2/ 2!+R3 (λ1)
 3 / 3!+ …+ Rn(λ1)

 n /
n!

2 elements, n defects:
Mn,2=1+R1 λ2+R2 (λ2 )

 2/ 2! +R3 (λ2)
 3/3! +…+Rn(λ2 )

n/ n!

e elements, n defects:
Mn,k= 1+R1 λe+P2 (λe)

 2/2! +… + Rn( λe )
 n / n!       (41)

For the number of defects less than or equal to the
number of elements per block, the die is always
repairable, i.e., R n  =1 for all terms with n ≤ e.

On the other hand, if a die has n defects, where
n  > e x b, the die is never repairable. The improvement
factor formula is then written as

1 element, n ≤ 1 defects:
Mn,1= 1+ λ1

2 elements, n ≤ 2 defects:
Mn,2= 1+ λ2 + ( λ2 )

2 / 2!

e elements, e  < n ≤   e x b defects:
Mn,e= 1+ λe+ (λe)

 2 / 2!  +…+  ( λe )
 e / e! + Re +1

( λe)
 e+1 / e+1! …+ Rn  ( λe )

n / n! (42)

where R n follows the expression given by equation (31).

Next the effect of increasing the number of blocks per
memory area on the redundant yield is studied. Dividing
the memory area into a larger number of blocks also
increases the chance for repair, since each block is
accompanied by one redundant element. However, there
is a certain maximum number of blocks, after which the
increase in improvement is negligible, since  the larger
order terms in the series start to diminish. In this
analysis, the total number of subarrays and Farea, are kept
constant, but the size of the subarray is changed
depending on how the memory  area is divided. The
number of redundant elements per block e is still one.

The general formula, equation (35), is used here, where
the number of blocks b is changed in the repair
probability term R n  given by equation (31).

Results and Discussion
This report describes a model that calculates the
redundancy yield. The amount of improvement depends
on some key factors: the repairable area, available
redundant elements, defect density and types of defects
and their distribution on the die. The memory area is the
area that contributes to redundancy, since the rest of the
die area cannot be fixed and has to be functional. Only
the random defect density is considered here as the defect
category that is potentially repairable. The number of
available redundant elements also determines how much
improvement can be gained. If there is one redundant
element per memory block, only one defect per block can
be fixed.  The type of defects is another important factor
in estimating the redundancy yield. Raster defects such as
bits, columns or rows (where bits can represent
individual or clustered defects as long as they fall in the
same memory block) are considered repairable.
Although the number of defects that could be fixed equals
the number of redundant elements available, those
defects have to follow a certain distribution on the
memory array according to the repair probability
described in the text.

Figures 2 through 4 show the improvement factor versus
the initial yield calculated by the three models: simple,
cumulative, and general. Data is compared to three
products from two different process generations.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0% 10% 20% 30% 40% 50% 60% 70%

intitial yield

im
pr

ov
em

en
t 

fa
ct

or
 M

M_meas M_general M_simp M_cum

Figure 2:  Three formulas compared  to data
measured on product 1



Intel Technology Journal Q4’97

7

Comparing the formulas of the improvement factor, the
closest fit to the actual data was obtained when all the
factors affecting redundancy were  accounted for (general
model). The simple model underestimates the data, since
it assumes the repair of die with one defect only, which is
not the real case. The cumulative model is overestimating
the data. It considers all types of defects  and assumes all
of them are repairable, if their count is equal to or less
than the number of redundant elements. Thus, it ignores
the restriction of allowing one defect per block.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0% 10% 20% 30% 40% 50% 60%

initial yield

im
pr

ov
em

en
t 

fa
ct

or
 M

M_meas M_general M_simp M_cum

Figure 3:  Three formulas compared  to data
measured on product 2

0

1

2

3

4

5

6

7

8

9

0% 10% 20% 30% 40% 50% 60% 70%

initial yield

im
pr

ov
em

en
t 

fa
ct

or
 M

M_meas M_general M_simp M_cum

Figure 4:  Three  formulas compared  to data
measured on product 3

The effect of varying the number of redundant elements
is shown in Figure 5. The effect of adding more
redundant elements is mostly seen at a lower initial yield.
It was observed that the improvement in yield is
significant up to two extra sets of elements for a die of
originally one redundant element per block. Beyond that,
the effect of decreasing the repairable area is dominating,
so that the two factors cancel out, and the overall
improvement is unchanged.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# of extra sets of redundant elements

im
pr

ov
em

en
t 

fa
ct

or
 M

Y = 4% Y = 9% Y = 14% Y = 23% Y = 38%

Figure 5: Improvement  factor when extra redundant
elements at different initial yield Y are added

Figure 6 shows the effect of dividing the memory area
into a large number of blocks. Again the enhancement in
the yield multiplier is observed at a lower yield. With an
increase in  the initial yield, an improvement in the
redundant yield was observed up to six blocks. Beyond
that, the effect of more blocks per repairable area is not
noticeable, since the higher order terms in the multiplier
formula are negligible and do not add extra value to the
yield multiplier.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# of memory blocks/ memory area

im
pr

ov
em

en
t 

fa
ct

or
 M

Y = 4% Y = 9% Y = 14% Y = 23% Y = 38%

Figure 6: Improvement factor when  the number  of
memory blocks at different initial yield Y is increased

Conclusion
A model for calculating the redundancy yield is
developed and described in this paper. Poisson’s equation
plus the effect of some redundancy-influencing factors
are used to derive a general yield multiplier formula. The
memory area is considered the only portion of the die
area  where redundancy is applied. The random defect
density is used here as the only defect category that
contributes to redundancy. From the defect population,



Intel Technology Journal Q4’97

8

only a fraction of it can be repaired depending on the
nature of the defect. According to the  die design, the
number of repairable defects depends on the available
redundant elements per memory block. This means that
the number of defects must be below a certain value, and
the defects have to follow a certain distribution
throughout the memory area to enable redundancy. An
efficiency factor is introduced and empirically evaluated
to account for the repairable defects. Combining those
factors, a general formula is derived and shows good
agreement with the actual data. Knowing the properties
of a new product  and using the efficiency factor for the
process generation,  the redundancy yield of a new
product can be predicted. The formula can also be used to
study the impact of varying the number of redundant
elements and memory blocks on the final result. Thus, a
better design that optimizes the number of redundant
elements, memory size with respect to the total die area,
and the number of blocks in the memory area might
result in a more efficient redundancy scheme.

Acknowledgments
I would like to thank Dan Grumbling for initiating this
project, Tim Deeter for the useful discussions and
comments during the development of the model, and
Mike Mayberry for his continuous support and guidance
throughout this work.

References
[1] Jitendra Khare, et al. Accurate Estimation of Defect-

Related Yield Loss in Reconfigurable VLSI Circuits.
IEEE Journal of Solid State Circuits. Vol. 28, No. 2,
February 1993.

[2] R. M. Warner, Jr. Applying a Composite Model to the
IC Yield Problem. IEEE Journal of Solid State
Circuits. Vol. SC-9, No. 3, June 1974.

[3] B. T. Murphy. Cost Size Optima of Monolithic
Integrated Circuits. Proc. IEEE. Vol. 52, December
1975.

[4] C. H. Stapper. On Murphy’s Yield Integral. IEEE
Trans. Semiconductor Manufacturing, Vol. 4,
November 1991.

Author’s Biography
Nermine Ramadan received a  B.Sc. in Nuclear
Engineering from the University of Alexandria, Egypt in
1982, and a  M. Sc. and Ph.D. in Nuclear Engineering

and Engineering Physics from the University of
Wisconsin, Madison in 1986 and 1992, respectively. In
1994 she joined Intel in Oregon  and is currently working
as a Senior Integration Engineer in Sort/Test Technology
Development. Her e-mail address is
nermine_ramadan@ccm.ra.intel.com



1

Redundancy and High-Volume Manufacturing Methods

Christopher W. Hampson, MD6 Cache Product Engineering, Hillsboro, OR, Intel Corp.

Index words: I5, redundancy, raster

Abstract

This paper will describe practical aspects of a redundancy
implementation on a high-volume cache memory
product. Topics covered include  various aspects of
redundancy from a design and product engineering
perspective; and present test development methods for
future product implementations.

As robust as Intel’s wafer fabrication processes are,
defects still occur, and wafer yields are the indicator.  As
die sizes increase, so does the probability of a defective
die. Failure analysis has shown that a large percentage of
memory array defects are attributed to single-cell defects.
This implies that a single memory cell fault can cause an
array of over four million cells to be deemed non-
functional.

Redundancy is a method wherein “spare” array elements
are incorporated into the design to replace elements that
have tested defective. First, the basic redundant element
strategy must be decided upon. This involves evaluating
row, column, and block replacement schemes. Second ,
the replacement mechanism needs to be a known and
reliable entity (e.g., fuses). The design challenge is to
select how many redundant elements to add without
increasing the die size to the point where the total
number of good die is less than the overall yield without
redundancy. The critical factors  are die size and defect
density. Yield forecasts and defect densities for a process
are usually available prior to the design phase and are
updated on an ongoing basis .

Introduction

The “I5” is the 512K byte second-level cache packaged
with the Pentium® Pro processor.  It is one of the first
cache devices at Intel to use redundancy. By using this
design feature, the I5 has achieved one of the highest
yield levels for an Intel product.  The overall yield
improvement on the I5 with redundancy is a generous
35%, and the cost savings are substantial.

I5 Architecture

The I5 architecture (Figure 1) consists of seventy-two
identical sub-array “blocks” that make up the data array.
It is organized into four quadrants, each containing
eighteen sub-arrays. One sub-array contains 64K memory
cells. Each sub-array corresponds to one input/output bit
on the device.  “R” represents the redundant elements.

Figure 1: I5 Basic architecture

The goal for redundancy involves evaluating several
parameters to make a decision on how much redundancy
to incorporate. First, the non-redundant yield should be
calculated. This is determined from wafer size, number of
die, and defect densities for the fabrication process.

For a sample wafer with 33 testable die, and known die
size and nominal defect density ,  the “perfect die” yield
might be 20 die per wafer (D/W), without redundancy.

TAG

D A T AD A T A

D A T A D A T A

D A T AD A T A

D A T AD A T A

Q1

Q2

R

R

R

R

Q3

Q4



Intel Technology Journal Q4’97

2

Figure 2:  Non-redundant wafer yield

With the addition of redundant elements, the die size
increases, so fewer die fit on the same size wafer. Hence
the “perfect die” yield decreases. We then need to be able
to predict for the same defect density, how many
additional die can be made functional for a total (perfect
plus redundant) die yield.

Figure 3:  Total  wafer yield with redundancy

Block replacement was chosen as the optimal strategy for
this architecture. Given this block replacement strategy,
the yield increase can be determined with defect
densities, die size, and sub-array size.

A yield multiplier can be calculated from the equation:

MULT  =   S (  1  +  0.01  (  N + I  )  Asb  D  /  k  ) k

Where:    S       = Programming success rate
                N      = # of sub-arrays
                I        = # of redundant sub-arrays
                Asb   = Sub-array area (mm2)
                D      = Defect density (#/cm2)
                k       = Constant for MOS processes
                0.01  = Conversion from mm2 to cm2

k is a constant derived from a formula for yield that is
based on an average value of the coefficient of variation
for the defect density distribution.  This yield model is
discussed in detail in the paper entitled “Redundancy
Yield Model for SRAMS” also published in this issue of
the Intel Technology Journal.

Since the data array is divided into four quadrants ,  the
logical direction for determining how much redundancy
to incorporate in the design was to calculate yield with
the multiplier and evaluate for one or more redundant
elements (sub-arrays) per quadrant. This process revealed
one element per quadrant as the optimum strategy (the
sub-arrays labeled “R” in Figure 1). The tag array was
evaluated for redundancy and was considered too small
for an effective implementation.

Table 1 shows the predicted yield for both the non-
redundant and redundant cases. The multiplier equation
assumed a programming success rate of 100%. As die
size increases due to redundancy, the perfect die yield
decreases. For a nominal yield level, the redundant yield
multiplier is 1.49 times the perfect die yield of 18,
resulting in a 27 D/W final yield. This model predicts at
this defect density level, a 50% increase in yield over the
perfect die with redundancy; and a 35% increase over the
yield without redundancy.

This was the model used to predict yield for the I5. With
a nominal defect density, the predicted increase in yield
on the I5 was 50% over the perfect die yield with
redundancy; and 46% over the non-redundant case.

One Redundant Element per 18 Sub-Arrays

Yield Level
Defect
Density

(per cm2)

Perfect D/W
Non-

Redundant

Perfect
D/W with

Redundancy

Data Array
Yield

Multiplier

Total Good
with

Redundancy

Ratio to
Non-

redundancy
Low 0.8 13 12 1.85 22 1.7

Nominal 0.5 20 18 1.49 27 1.4
High 0.2 28 26 1.18 30 1.1

Non-redundant: Gross Die/Wafer = 36, Redundant: Gross Die/Wafer = 34

Table 1: Sample wafer redundant yield calculation

P = Perfect Die
Perfect Yield = 20
Gross Die = 36
Tested Die = 33

P = Perfect Die
R = Redundancy Die
Perfect Yield = 18
Redundancy Die = 9
Total Yield = 27
Gross Die = 34
Tested Die = 31

RRR

R R
R
R

RR

P
P

P
P
P

P
P

P
P

P

P

P
P

P
P
P

P
P

PP
P PP

P PP PP
P PP
P P P

P P P
P



Intel Technology Journal Q4’97

3

The Replacement Mechanism

The crux of any redundancy implementation is the
method used to substitute defective elements with
defect-free elements. On the I5, flash cells are
programmed to direct muxes that replace the defective
sub-arrays with defect-free sub-arrays.

Figure 4: Flash cell basic schematic

The flash cell is basically two transistors, one floating
gate, and a select gate (Figure 4). To program, a high
voltage is applied to the programming gate, and with
the select gate turned on, current will flow to the drain
of the floating gate transistor. This creates the fields
conducive to hot-electron injection, causing an increase
in the threshold of the floating gate. Cells should have
low unprogrammed switching thresholds (Vt) out of
fab, and once programmed, they should have high
switching threshold levels. For more information on
flash technology, refer to [1].

In Figure 1, a sub-array is replaced by its neighboring
sub-array, closest to the redundant sub-array. The sub-
arrays between the bad sub-array and the redundant
sub-array are also switched to their neighboring sub-
array. All this switching is done by muxes in the read
and write paths of the device.

One redundant sub-array per quadrant allows for one
and only one defective sub-array replacement per
quadrant, up to four per die. The task is to determine
the number of defective sub-arrays per quadrant. This
process is integrated with the cache raster capability.
Raster is a test process used to uniquely identify all
failing cell locations on the device. The redundancy
algorithm is integrated with the raster function to
identify the failing sub-arrays.

The Redundancy Algorithm

The basic idea of the redundancy test flow is to find the
devices that are defective, evaluate the extent of
replaceability (one failing sub-array per quadrant),
program the flash cells to effect the replacement of the

failing sub-array, and re-test to ensure the redundant
sub-array is defect free.

This is accomplished by obtaining fail information from
rastering, and modifying tests in the flow, that once
executed, will perform the programming and reading of
the flash cells. The algorithm is further enhanced by
ensuring the cells are programmed to a high reliability
level, detecting high Vt cells out of fab, and checks for
resorting wafers containing programmed cells.

The Details

The replacement process occurs early in the test flow, at
the Built-in-self-Test (Bist) step. This test checks every
memory cell in the data array. The  flow starts when
this test fails (see Figure 5). This is the only point in the
entire test flow at which sub-array replacement is done.

At the raster step, all the failing cell information is
collected. It is also discerned if fails occurred in more
than one sub-array per quadrant.

Figure 5: Redundancy algorithm

BL
Prog

WL (Select)

Erase

   BIST
   TEST

   BIST
   TEST

   Continue

  Read and Send
 Flash Cell info
     to Database

  Collect Raster
          and
Replacement Data

  Redundancy
       OK  ?

  Reliability
    Test Pass
          ?

   Any Flash
    Cells On ?

      Is Die
  Redundant
          ?

N

N N

Pass

Pass

Fail

Fail

Y

Y

Y

    Program all
    Flash Cells

   Any Flash
    Cells = 1?

   Flash Cells
    Read OK
           ?

N

N

N

Y
Y

Y

= Failed Die



Intel Technology Journal Q4’97

4

If not, the test flow is halted, and the die is binned non-
functional.

First the array is read and tested for all cells equal to
“0.” This checks for cells whose Vt’s are high enough
to read as a “1,” out of fab. If any cells are read as “1,”
the die is binned non-functional.

The flash cells are then programmed and tested for the
expected contents, and if a cell failed to program, it is
binned out.  A reliability test is then done to ensure the
cells are reliably programmed. This test gives an
indication of a high Vt.

The BIST tests are then re-executed, passing die flash
cells are read and written to the database for possible
future failure analysis, and the die continues the test
flow.

If die passes the first BIST tests, the flash cells are read
to determine the die’s status. If any cells are read as
“1,” then it must be determined if this is a bad cell out
of fab, or a redundancy die. Once this determination is
made, the die is either binned non-functional or
continues the test flow.

The Production Results

Raster and replacement data indicated that 85% of all
die that failed the BIST screen could use redundancy.
After the first month in production, an average increase
in yield of 35% was evident.  Subsequently, after
redundancy had been enabled for two quarters of
production, a cost analysis was performed. It showed
that all the replacement die had amounted to an
equivalent of  6696 wafers. The direct unit cost savings
were substantial. In addition to the direct costs, this
savings enabled the  manufacture and sale of many
other Intel products.

Test Cost of Redundancy

An additional 1.5 seconds was needed to implement
redundancy on a die in the sort test program. An
analysis was performed to determine if redundancy
actually lowered the test time per good die, over an
entire lot. Considerations were good and bad die test
times with and without redundancy, and time to align
wafers and stepping to other die on the same wafer. It
was concluded in all cases for different yields that a
significant test time savings could be achieved. The
actual test time savings at nominal yield levels
amounted to 1.33 seconds per good die over the test
time without redundancy. Test time savings are greater
for lower yields.

Conclusions

The design yield predictions based on redundancy were
somewhat inflated due to the general model used.

 At nominal yield levels, the predicted increase was
(50%); the actual increase was  (35%).

First, the factor that would inflate the prediction, yield,
is based on the wafer size and therefore is calculated
with the gross die per wafer count instead of tested die.
This is standard for yield calculations, so the initial
predictions counted on more die available for
replacement. Furthermore, a major contributor to the
degradation of the replacement rate was the 15% fallout
for those die whose data arrays had more than one
defect per quadrant.

A new redundancy model has been formulated that
takes into account the number of “tested die” and the
possibility of defect types that do not warrant
replacement.

The redundancy application with the I5 has shown that
there are other factors that would increase the accuracy
of a redundancy model. Quiescent current screening is
an important factor that will change for different
product types. This screen accounted for an additional
1% reduction in replacement rate, but could be higher
for products with tighter testing. The programming
success rate seen on the I5 was less than perfect at 97%.
This is due to redundant die that had defects in the
redundant sub-array, or die that failed to program flash
cells. An additional component is the reliability test on
the programming element. The position of the
replacement function in the test flow, and the test used
to determine if a die needed redundancy, are other
considerations that can alter the replacement rate.  All
these factors can be incorporated into redundant yield
predictions in the future.

Summary

Improvements to yield prediction and implementation
aspects have been described. The I5 has shown that
redundancy makes sense on large arrays, and its
benefits are greater for lower yields. It can be
implemented and made production worthy, and
improved yields and substantial savings can be realized.

References

[1] Ohsaki, K., Asamoto, N., Takagaki, S., “A Single
Poly EEPROM Cell Structure for use in Standard
CMOS Processes,” IEEE J. Solid State Circuits, vol. 29,
No.3, March 1994, pp. 311-316.

Author’s Biography
Christopher Hampson is a product engineer in the
Microprocessor Products Group, Cache Products
Division. He received a B.Sc. degree in Computer
Science from National University, San Diego, Ca. He
joined Intel in 1993, was a lead product engineer on the
L2 cache for the Pentium Pro® processor, and is



Intel Technology Journal Q4’97

5

currently working on the next generation of  Intel’s
cache products. His e-mail address is
champson@ichips.intel.com



IEEE International Electron Devices Meeting ( Dec '97)

A PROM Element Based on Salicide Agglomeration
 of Poly Fuses in a CMOS Logic Process

Mohsen Alavi , Mark Bohr, Jeff Hicks, Martin Denham, Allen Cassens, Dave Douglas, Min-Chun Tsai
Intel Corporation, Portland Technology Development

 Hillsboro, OR
Abstract

     A novel programmable element has been developed and
evaluated for state of the art CMOS processes.  This element
is based on agglomeration of the Ti-silicide layer on top of
poly fuses.  Various aspects of these programmable devices
including characterization and optimization of physical and
electrical aspects of the element, programming yield, and
reliability have been studied. Development of a novel
programming and sensing circuit is also included.

Introduction
      The capability of implementing a small PROM array on
logic products at no additional process cost is highly
desirable for a number of applications such as redundancy
implementation in SRAMs, die identification, electrically
programmable feature selection, etc.
      As CMOS technology scaled, gate oxides became thin
enough that implementation of flash memory cells on
standard logic CMOS processes (SPEED) became possible
[1]. However, further scaling of CMOS technology resulted
in inadequate charge retention in the SPEED device due to
tunneling of carriers through the gate oxide.
      The element presented here avoids the problem with
scaled gate oxide thickness.  The results are a fuse element
which is reliable under thermo-mechanical and bias-
temperature stress while enjoying near 100% programming
success used in a specially designed circuit. Programming
the fuse does not result in any collateral damage in overlying
or underlying layers and may be performed nominally at
2.5V and 10 mA in 100 ms.

General Description of the Element
A.   Physical Properties
      The poly agglomeration fuse (PAF) is made from a
polysilicon line  shunted on top by a layer of Ti-silicide
which is used as the gate in CMOS processes.  It is
programmed via current stress which results in temperatures
high enough to cause agglomeration of the Ti-silicide [2].
The damage due to programming of the element has been
found to be very subtle and confined to the Ti-silicide and its
interface with the underlying poly layer and the overlying
dielectric.  The integrity of the entire overlying stack from
the passivation to the overlying ILD is found to be intact and
no collateral damage has been observed (see Fig. 1,2). This
is in contrast with traditional poly or metal fuses which
require openings in the overlying layers to facilitate removal
of fuse material, and therefore, a post program passivation
step.  Typically, a fuse link is drawn at minimum allowable

width with a few microns of length (see Fig. 2).  The effect
of fuse doping and geometry on its performance has been
investigated extensively and will follow.

     

x

Oxide

Oxide

Substrate

Ti-Si2

Poly

0.5 µmx

Fig. 1,  Cross section of the damaged section of a programmed fuse. Lack of
collateral damage to the overlying  and underlying layers is evident..

   
Fig. 2, Top view of a programmed fuse. The subtle damage due to
programming is evident on the left side of the element.

B.  Electrical Properties
      Prior to programming, electrical properties of the fuse
are determined by the salicide layer on top which has a sheet
resistance of about 4 ohms per square in our study, resulting
in a typical resistance of about 50-100 ohms depending on
the dimensions of the fuse. Injection of current beyond a
certain level results in a sudden increase in resistance
indicating formation of discontinuities in the silicide layer.
The value of this resistance varies greatly from device to
device. In our structures, post program resistance varied
from several hundred Ohms to several hundred kOhms. Post
program I-V characteristics are found to be nonlinear and
therefore, the value of resistance varies with applied bias.

Element Characterization
A.  Test Structures
     The element described above has been implemented in a
0.25um CMOS process with a poly thickness of about 0.2um
[3].  Ti-silicide films resulting in sheet resistance ranging



IEEE International Electron Devices Meeting ( Dec '97)

from 3 to 4 ohms per square have been studied.  Initial and
post program electrical characteristics of a variety of element
designs have been investigated.  This includes the effects of
poly doping (n, p, undoped), fuse length and width, fuse
shape, programming and sensing voltage and current, and
programming time.

B.   Programming dynamics
      In order to program an element, a certain amount of
current is needed. The voltage needed for injecting this
current must obviously be smaller than the available  power
supply voltage. Under constant voltage stress, as the element
gets hot enough, agglomeration starts to occur, thereby,
increasing the element resistance. As a result, the current
through the element drops to a low value consistent with the
elements final resistance and the element cools down. This
mechanism is one with negative feedback. Therefore, a given
fuse may be stressed only once and it’s post program
resistance will not increase with additional voltage stress.
       Figure 3 shows the I-V characteristics of a typical fuse
element. As the voltage is increased, current increases in a
nonlinear fashion due to resistance change caused by self
heating.  When the dissipated power reaches a critical value,
fusing occurs and element goes to a much higher resistance.

  

0
0

0.5 1.0 1.5 2.0 2.5

Potential (Volts)

3

6

9

12

15

C
ur

re
nt

 (
m

A
)

Onset of Programming

Figure 3,   I-V characteristics of a typical element upon programming.

C.   Response parameters
        Initial and post program resistance of the element are
the two key parameters affecting any circuit meant to sense
the state of the element.  A maximum value of initial
resistance and a  minimum value of post program resistance
are needed to guarantee proper circuit function (about 100Ω
and 1kΩ respectively in our circuit).
        Initial fuse resistance depends on element geometry and
silicide thickness and quality. Silicide quality in turn
depends on process conditions, poly line width, and doping
[2,4].  Silicide imperfections are more likely for long narrow
elements and best silicide lines were found to be the ones
made from p-doped poly. Imperfections in  the  silicide  layer

(cracks,  high resistance  Ti-Si  phase) result in a resistive
element Figure 4 shows cumulative distribution of the
resistance of a typical fuse structure made with two processes
with different thermal cycles and Ti thickness. A high
resistance tail corresponding to silicide imperfections is
evident in the distribution of the resistance of the
unoptimized process.
Post program resistance varies greatly from device to device
and depends on the shape and size of the discontinuity in the
link. Due to this variation, any aspect of this resistance must
be studied statistically. Many factors affect the level of fusing
and therefore, post program resistance. They include:

0 4 0 8 0 120 160 200

0.1

1

  1 0

3 0
5 0

7 0

9 0

9 9

 99.9

1

1

1

1

1

1
1

1

1

1

2

2

2

2

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Ohms

 (2)

(1)

Figure 4,  Resistance of a typical fuse. (1) Unoptimized silicide process, (2)
Optimized silicide process.

        Programming  voltage,  current,  and  time:   Even
though fusing can occur quickly and at fairly low currents
and voltages (in the order of 1V, 8mA, 1mS), post program
resistance is significantly enhanced if more energy is
dumped into the element Therefore, increased voltage and
current levels are needed for a longer time to guarantee a
sufficiently large resistance. In this work, minimum
programming conditions which resulted in statistically
adequate post program resistance were a current of 20mA
injected for 100ms with a voltage compliance of 2.5V.
       Initial fuse integrity: Measured data shows that fuses
that are more robust initially (by process or geometry) result
in more successfully programmed elements. This is due to
the fact that for a given voltage compliance and a given
value of fusing current, a smaller resistance results in a
larger amount of energy transferred to the device. The
fortuitous result is that process conditions which result in
good silicide formation and robust unprogrammed fuses also
produce elements which program successfully.
    Fuse shape: In addition to the relation between fuse size
and it's initial resistance, the shape of the fuse has a marked
effect on the distribution of its post program resistance. This
has been found to be due to the fact that in addition to the
high temperature necessary for agglomeration, the level of



IEEE International Electron Devices Meeting ( Dec '97)

temperature gradient (and therefore stress) in the element
plays a key role in the fusing event. Fusing has been found to
occur near the sides of the element close to the point which
has the highest temperature gradient (see Figure 2,5).
Additionally, line width plays a significant role in fusing
success with narrower lines having the advantage of better
fusing. Figure 6 shows four different fuse shapes of the same
length. Figures 7,8 show  the distribution of initial and post
program resistance for these elements. The difference
between post program resistance of elements a,b corresponds
to the  effect of element width while differences between
structures c,d show the effect of temperature gradient.

   

Center link

T
em

pe
ra

tu
re

 (
C

)

25

245

465

685

905

T
em

pe
ra

tu
re

 G
ra

di
en

t (
C

/µ
m

)

0

180

360

540

720

Normalized position along the fuse length
Figure 5, Simulation results of profiles of temperature, and temperature
gradient along the length of a typical fuse at nominal programming bias.

Modeling and Simulation
In order to look for an optimum fuse design, numerical
simulation of temperature in the element under current stress
has been performed. The simulation is based on a two
dimensional model with an added loss term to the overlying
and underlying layers. Thermal conductivity of the silicide
layer and the heat loss coefficient were fitting parameters.
Assuming that fusing occurs when the temperature of the
fuse reaches 800C (silicide agglomeration temperature [2]),
the simulation is able to predict fusing current using a single
set of fitting parameters for various fuse geometry with good
accuracy (see Fig. 5,9) and provides insight into the
distribution of temperature and its gradient in the element.

                            (a) (b) (c) (d)
Figure 6, various fuse shapes. All elements are p-type, about 2um long. (a)
width=0.22um, (b) width=0.27um, (c, d) width = 0.22um/0.27um.

0.0 20 40 60 80 100

0.1

1

10

30
50
70

90

99

1

1

1

1

1

2

2

2

3

3

3

3

5

5

5

5

5

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Ohms

(a) (d)

(c)

(b)

Figure 7,  Pre-programmed fuse resistance of structures in figure 6.

0 2.0 4.0 6.0 8.0 10

0.1

 1

10

30

50

70

90

99

 99.9

1

1

1

1 1
1

1

1

1 1 1
1

1 1
1 1

1
1

1
1

1
1 1 1

1
1

1

2

2

2

2

2

2

2
2

2

2
2 2

2 2 2 2
2 2 2 2

2
2 2

2 2 2
2 2 2

2

3

3
3

3

3
3

3
3

3

3

3 3

3
3 3

3

3
3

3 3 3
3

3 3 3 3
3 3

3 3 3
3 3

3
3

3
3

3

4

4 4

4

5

5

5

5

5

5

5

5
5

5

5

5
5

5
5

5
5

5

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

kOhms

(d)

(b)

(c)

(a)

Figure 8,  Post program resistance of fuses in Figure 6.

Sensing Circuit
       A special circuit has been developed for programming
and sensing the element.  Figure 10 shows a simplified
schematic of this circuit. Programming occurs when a logic
LO is asserted on the gate of a large PMOS transistor. Since
the fuse programs at relatively low bias, logic and
programming circuits share a common supply voltage.
       The sensing circuit is a novel and well-balanced
solution to a stringent set of requirements, the foremost
being that the sensing currents must be kept very low.  The
core of this circuit comprises a pair of matched N-channel
transistors, which perform the sensing, and a pair of
matched P-channel devices, which act as current-sensing
output loads.  The N-channel sensing transistors are
connected in a current mirror configuration, such that, if the
fuse-reference resistance on the left were equal to the
unburned fuse resistance on the right, both circuit branches
would have equal current.  In practice, the reference
resistance is set to about 8 times that of the unburned fuse.
This ratio of reference to fuse creates a default (unburned)
output voltage that is low enough to be interpreted as a logic
LO value.  Additionally, for a programmed fuse, the
resulting output voltage is sufficiently high to be interpreted



IEEE International Electron Devices Meeting ( Dec '97)

as logic HI.  Therefore, the gain of the circuit is sufficient for
single-ended voltage outputs.

     

0.5 1.0 1.5 2.0 2.5 3.0 3.5
6

8

10

12

14

o
o

o

o

o

o

x
x

x

x

++

+

+

F
u

si
n

g
 C

u
rr

en
t 

(m
A

)

Fuse length (um)

+  Width=0.30µm
x  Width=0.27µm
o  Width=0.24µm

Figure 9,  Measured and simulated current at the onset of fusing. Solid lines
show simulation results.  Symbols show measured data points

       In this circuit, the ratio of reference to unburned fuse
resistance represents a balanced tradeoff between output high
voltage (VOH) and output low voltage (VOL) levels.  With a
ratio of 8, noise margins for VOH and VOL signals are
roughly equal.  The resulting noise margin is adequate to
guard-band the circuit from expected manufacturing
variations in transistor Vt and channel length.

      
Figure 10,  Schematic of a simplified programming and sensing circuit.

Yield and Reliability
       A PROM array based on the PAF will suffer yield loss if
the programmed fuse does not have a high enough resistance
to be properly sensed. Programming yield  depends on the
fuse design (see Fig. 8), array size, and circuit design. Even
after optimizing the element and circuit, the resulting yield
may not be as high as expected. In that case, redundant fuse
elements are needed such that if programming of a given
fuse in a given memory bit is not successful, an additional
fuse is available in that bit for an extra attempt. In this work,
for a 64 bit array, a programming yield loss of less than 1 in
10,000 was achieved using two fuses per bit (a programmed
state in either fuse resulted in a programmed bit).
     The reliability of this element was characterized by
placing a large number of samples (programmed and

unprogrammed) under thermo-mechanical  stress (1000
cycles of condition 'C' temperature shock) and in bake (300
hours, 250C). The element was found to be quite stable
under these conditions (see Fig. 11). Additional testing was
done to characterize the stability of the unprogrammed fuse
under bias temperature stress. Results indicated that as long
as the sensing current is significantly less than the current at
the onset of programming, the device will remain stable.

       

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.1

1

10

30
50
70

90

99

99.9

1

1
1

1

1

1

1

1
1

1

1
1

1

1

1

1

2

2

2
2

2

2

2
2

2

2

2

2
2

2

2

kOhms

Initial Stressed

Figure 11,  Post program fuse resistance distribution of a typical fuse before
and after 300HR 250C bake.

Conclusions
      Poly agglomeration fuse is a reliable programmable
element which may be implemented in a logic CMOS
processes.  This element may be programmed under nominal
bias and does not introduce any collateral damage.
Distribution of the post program resistance depends on
silicide quality, fuse shape, doping, and programming
conditions. Optimized conditions for fuse shape and
programming parameters have been presented using
empirical results and numerical simulations and a novel
circuit has been presented for the device with a 1 in 10,000
programming yield loss for a 64 bit PROM arrays with 2
fuses per bit. Element reliability has been verified under
temperatue shock and bake.

References
1) K. Ohsaki, N. Asamoto, S. Takagaki, "A Single Poly EEPROM Cell

Structure for Use in Standard COMS Processes", IEEE J. Solid  State.
Circuits, Vol 29, No. 3, March 1994, PP. 311-316

2) J.B. Lasky, J.S. Nakos, O.J. Cain, P.J. Geiss, "Comparison of
Transformation to Low-Resistivity Phase and Agglomeration of TiSi2
and CoSi2, IEEE Trans. Elect. Devices, Vol. 38, No. 2, Feb. 1991, pp.
262-269.

3) M. Bohr, et. al., “A High Performance 0.25µm Logic Technology
Optimized for 1.8V Operation”, 1996 IEDM Tech Digest, 1996, pp. 847-
850.

4) J.A. Kittle, Q-Z Hong, D.A. Prinslow, G.R. Misum, "A Ti Salicide
Process for 0.10 um Gate Length CMOS Technology”,  1996 VLSI Symp.
Tech. Digest, 1996, pp. 14,15.


	preface
	overview
	development
	model
	manufacturing
	iedm972



