
1

The Performance of the Intel TFLOPS Supercomputer

Greg Henry, Enterprise Server Group, Beaverton, OR, Intel Corp.
Pat Fay, Enterprise Server Group, Beaverton, OR, Intel Corp.

Ben Cole, Enterprise Server Group, Beaverton, OR, Intel Corp.
Timothy G. Mattson, Microcomputer Research Laboratory, Hillsboro, OR, Intel Corp.

Index words: Parallel Supercomputer Applications

Abstract

The purpose of building a supercomputer is to provide
superior performance on real applications. In this paper,
we describe the performance of the Intel TFLOPS
Supercomputer starting at the lowest level with a detailed
investigation of the Pentium® Pro processor and the
supporting memory subsystem. We follow this with a
description of the benchmarks used to track the
performance of the machine over its development life
cycle, which culminated in the first MP LINPACK run to
exceed a rate of one trillion floating point operations per
second (TFLOPS). Our analysis applies not only to the
TFLOPS supercomputer, but also to servers and
workstations based on the Intel 32-bit architecture. We
conclude with a discussion of the machine's performance
on a production application.

Introduction
The Intel TFLOPS Supercomputer, also known as the

ASCI Option Red Supercomputer, at Sandia National
Laboratories in Albuquerque, NM, is the world's fastest
supercomputer. By this we mean that this supercomputer
is theoretically capable of doing more floating point
operations per second on a given application than any
other general purpose supercomputer built to date. With
over 9200 Intel Pentium Pro processors each of which is
capable of running at 200 million floating point operations
per second (MFLOPS), this supercomputer can
theoretically run at over 1.8 trillion floating point
operations per second (TFLOPS).

An overview of what the supercomputer is and how it
is used, the operating systems and parallel I/O running on
it, and the scalable platform services that support it are the
subjects of other papers in this Q1’98 issue of the Intel
Technology Journal. This paper looks at how you
achieve high performance with real applications. This
improved performance cannot be achieved by adding

more or faster nodes since the hardware is fixed.
Therefore, we look at algorithmic and coding
enhancements to the applications. Furthermore, we
investigate what kinds of performance can be reasonably
expected, and what can be done to enhance the
performance of given applications.

It can be argued that the first barrier to achieving
performance on an application is parallelizing it. That is,
the data and/or work must be efficiently distributed
amongst all the processors in order to achieve optimum
performance from the processors working together. How
easy, hard, or possible this is depends on the application.
It is not our goal here to discuss this difficulty. As
mentioned in another paper in this issue, there are around
4500 compute nodes in this supercomputer each having
two processors. Let us assume that an application can be
at least distributed among these 4500 nodes. Since the
funding for this supercomputer comes from the DOE�an
organization with vast experience in scalable computing–
assuming that the application is parallelized is not entirely
unreasonable. And although none of the applications have
ever been run on such a large parallel supercomputer, the
scientists at Sandia National Laboratories have spent
many years achieving parallelism in their data and know
how to take advantage of a scalable supercomputer.

Hence, instead of discussing application
parallelization, we discuss the efforts required to achieve
high performance of existing parallel applications. The
total efficiency of the full system cannot be better than the
efficiency of a single node. Much of our discussion is
focused on a single node or even a single processor. We
start with a quick introduction to the Pentium Pro
processor followed by our initial performance
explorations on a processor and its supporting memory
subsystem. We then explore some of the benchmarks
used to track system performance and discuss our historic
MP LINPACK computation. The paper concludes with a
brief discussion of a specific application called CTH.

Intel Technology Journal Q1’98

2

The Pentium Pro® Processor
The Intel Pentium Pro processor is used on all the

nodes in the Intel ASCI Option Red Supercomputer. A
full description of the processor is beyond the scope of
this paper and is available elsewhere [17]. In this section,
we highlight the key features of the processor and
emphasize issues that are important when analyzing
application performance.

At runtime, an instruction for the Pentium Pro
processor is broken down into simpler instructions called
micro-operations (or uops). Three decode units are
available on the processor to carry out this decomposition.
One unit (unit 0) can decode complex operations while
any of the three units can decode simple operations. The
uops execute inside the Pentium Pro processor with the
order of execution dictated by the availability of data.
This lets the CPU continue with productive work when
other uops are waiting for data or functional units. This
out of order execution is combined with sophisticated
branch prediction and register renaming to provide what
Intel calls, dynamic execution.

The Pentium Pro processor’s core can execute a burst
rate of up to five uops per cycle running on five functional
units:

� Store Data Unit
� Store Address Unit
� Load Address Unit
� Integer ALU
� Floating Point/Integer Unit

 Up to three uops can be retired per cycle of which only
one can be a floating-point operation. The floating-point
unit requires two cycles per multiply and one cycle per
add. The adds can be interleaved with the multiplies so the
Pentium Pro processor can have a result ready to retire
every cycle. Hence, the peak multiply-add rate is 200
MFLOPS at 200 MHz.

 The Pentium Pro processor has separate on-chip data
and instruction L1 caches (each of which is eight KBytes).
It also has an L2 cache (256 KBytes) packaged with the
CPU in a single dual-cavity PGA package. Cache lines are
32 bytes wide. The L1 data cache is dual-ported and non-
blocking, supporting one load and one store per cycle for
peak bandwidth of 3.2 billion bytes per second (GB/sec)
on a 200 MHz CPU. The L2 cache interface runs at the
full CPU clock speed and can transfer 64 bits per cycle
(1.6 GB/sec on a 200 MHz Pentium Pro processor). The
external bus is also 64 bits wide and supports a data
transfer every bus-cycle.

 The Pentium Pro processor bus offers full support for
memory and cache coherency for up to four Pentium Pro
processors (though our compute nodes only have two
processors). It has 36 bits of address and 64 bits of data.

 Bus efficiency is enhanced through the following features:
� the capability to defer long transactions
� a bus pipeline with a depth of 8
� bus arbitration on a cycle-by-cycle basis

The bus can support up to eight pending transactions
while the Pentium Pro processor and the memory
controller can have up to four pending transactions.
Memory controllers can be paired-up to match the bus’s
support for eight pending transactions.

The bus can sustain data on every clock cycle, so at 66
MHz, the peak data rate is 533 million bytes per second.
Unlike most CCOTS processor buses, which can only
detect data errors by using parity coverage, the Pentium
Pro processor data bus is protected by ECC. Address
signals are protected by parity.

Memory Movement
The first obstacle to fast parallel performance is the

per node performance. Therefore, in this section, we
discuss how fast we were able to run code on just one
node, which has two 200 MHz Pentium Pro processors.
(In many cases, our observations could be extended to the
Intel Pentium� II processors, with appropriate
adjustments made in the core frequency and cache
specifications.)

Scientific applications tend to differ from many
commercial applications in that they often have huge data
sets, and large amounts of floating point operations are
done on these data sets. How quickly data can be moved
and manipulated is significant.

Let us start with our definition of memory movement.
We use the phrase "memory movement" to refer to the
movement of data into the floating-point stack or into the
L1_data cache. Frequently, memory movement
discussions are restricted to the movement of data from
main memory. However, we needed to focus on the
larger issue of using data, whether it might already be in
cache or not. Therefore, issues such as the instruction
decoding sequence and how it affects the rate that data can
be pulled from the L1_data cache are included in this
discussion of memory movement. In essence, our focus is
on anything that impacts memory movement.

Studying memory movement leads to an investigation
of the concept of hierarchical memory. There are a finite
number of resources available in the hierarchy and any
memory reference must eventually traverse the entire
hierarchy. As an example, if you do a store of a value in a
register to main memory, you need to go to L1 and L2 on
your way to main memory, although the write-back nature
of the caches may prevent this from happening
immediately. The fastest resources (the registers) can
work with the smallest amount of data. There are levels of
cache to improve data movement efficiency built on top of

Intel Technology Journal Q1’98

3

the registers. The further one goes from the registers, the
longer the wait and the slower the bandwidth for memory
movement, as well as the more data it can hold. The base
of this pyramid is often the main memory, which in our
case is 128 Mbytes (1 Mbyte = 220 bytes), although this
hierarchical scheme can easily be extended to include
multiple nodes, and finally the parallel I/O subsystem.
(As mentioned previously, we choose to focus our
attention in this section on the single node model, which
includes the registers through the main memory
subsystem.)

Despite having 40 internal floating-point registers, the
application program can only address the 8 floating point
register stack. In many cases, this was a significant
bottleneck to overall performance.

The next level of memory hierarchy is the primary on-
chip non-blocking L1_data and instruction cache. For the
Pentium Pro processor, these are 8 Kbytes each and are
two-way set associative, write-back and write-allocate.
Reading data from L1 can be done at 1600 million bytes
per second or 1526 Mbytes/sec, which amounts to one
double per CPU cycle. Writing data can also be done at
the same speed. Furthermore, two CPUs can be
simultaneously reading and writing data to/from their
perspective L1 caches. We prefer, however, to simplify
the discussion by temporarily ignoring these issues. More
to the point, we claim it is rare that a scientific application
will have many reads and writes to the L1_data cache
occurring at the same time.

The next level of memory hierarchy is the non-
blocking unified off-die L2 cache. In our case, the L2
cache holds 256 Kbytes and can theoretically sustain 1600
million bytes per second reading exclusive or writing. All
cache lines are 32-bytes wide.

A compute node has a memory subsystem with 128
Mbytes. The PCI bus operates at 33 MHz. The memory
bus runs at 66 MHz., is 64 bits wide, and can support a
data transfer every bus cycle. That is, it can do one 8 byte
(64 bit) transaction every bus clock. This amounts to a
bandwidth of an 8 byte read or write to L2 every 3 cpu
clocks or 1600/3 = 533 million bytes/sec (508
Mbytes/sec.)

The first step in our investigation was to find out how
fast we could do simple floating-point operations from
various levels of memory. First, we looked at how quickly
we could load and pop the data (from various places on
the hierarchy) onto the floating-point stack. Second, we
looked at how we could use this information to build
simple kernels like element vector multiply (x(i) =
y(i)*z(i), i= 1,...,n) or matrix-matrix multiply (for MP
LINPACK).

It is important here to emphasize the specific nature of
our study. Other research papers and/or projects tend to
look no further than how fast memory can be moved. But

for us, since our final goal is ultimately floating point
calculations, by necessity our investigation targeted the
floating-point stack. IA-32 instructions like REP MOVS
(repeat move string long), although interesting for timing
memory movement, are not sufficient to meet our final
goal. Following is a discussion of those results and
observations that bear on the benchmarks and applications
discussed later in this paper.

Overheads Due to the Instruction Decoder
There are three instruction decoders on the Intel

Pentium Pro processor. These decode complicated IA-32
instructions into simple uops. Only the processor uses the
uops: a programmer can not directly code in terms of
uops. Only one of the decoders can decode "complex"
instructions. The following problems are directly based
on overheads due to the decoder. While none of these
problems are measurable when moving data from
memory, they can be observed when we know the data lies
in the L1_data cache.

Reading data from the L1_data cache onto the floating
point stack has a theoretical upper bound of one double
per clock or 1600 million bytes a second. Using integer
touches like “movl 8(%eax), %ebp,” as opposed to
floating point touches like “fldl 8(%eax),” we have come
within a percent of this speed. However, using floating
point loads and pops (we say pops instead of stores
because the typical case is that we have many loads
followed by add-pops or mul-pops and then perhaps only
one store), we observed stalls every time an instruction
passed over a 16-byte instruction boundary. A random
sampling of floating point showed that floating point
instructions are typically 5-7 bytes in length. This means
that typical compiled floating point codes tend to run at
only 80 percent efficiency out of the L1_data cache,
encountering a stall every fourth instruction.

Our best code, which tried to avoid this problem,
peaked at 1450 Mbytes/sec out of a possible 1526
Mbytes/sec. To achieve this level of performance, we had
to use a potentially unrealistic degree of loop unrolling.
We also had to keep the offsets small so that the
instructions could be decoded in a smaller number of
bytes. (A floating point load off of a location in a register
can be a two-byte instruction if there is no offset, a 3-byte
instruction for offsets up to 128 bytes, and a 6-byte
instruction or more for larger offsets.) Another way of
viewing this is if you know that you have X data loads
from L1_data, instead of taking minimally X cycles, it is
likely to take 1.25*X cycles.

These observations pointed out a critical performance
issue: codes tend to run faster when the instructions are
simpler. Complicated instructions can lead to a stall
because only decoder 0 can decode the complicated
instructions. Things like multiplying an element from

Intel Technology Journal Q1’98

4

memory with an element in floating point stack location 0
can be implemented with a single IA-32 instruction, but
require several different micro-operations to execute.
Codes may often be faster if they are implemented with
simpler instructions. For our example, one could first do a
load and then in the second instruction do the multiply.

Floating Point Registers and Pipelining
When moving data from L2 or main memory, we often

found that we needed to touch several different cache lines
in order for the pipeline to be deep enough to obtain the
faster bandwidths necessary for scientific calculations.
This was one of the cases where having too few floating
point registers was immediately apparent. In some cases,
we sped up codes by interleaving integer touches of
cache-lines before we actually did the explicit floating-
point load onto the stack. This was critical to
performance tunings of matrix multiply for MP
LINPACK, for example.

An important finding was that a single 200 MHz
Pentium Pro processor cannot saturate the memory bus
bandwidth. That is, out of the 533 million bytes a second
or 508 Mbytes/sec, the fastest bandwidth we achieved was
around 428 Mbytes/sec or 85 percent of the maximum
theoretical bandwidth. Two 200 MHz CPUs, on the other
hand, achieved 491 Mbytes/sec. Several tricks were used
to achieve this higher performance. We needed to
synchronize the CPUs at critical points using a special
utility we created. We needed both CPUs to saturate the
bus (although higher frequency Pentium II processors are
more likely to saturate their bus). We also needed to
unroll our floating point calculations sufficiently enough
to ensure that there were always several outstanding
cache-line requests at once, such as touching doubles
X(1), then X(5), then X(9), etc., before attempting to
access X(2). This enabled the pipeline to remain busy.
Using a second processor to access data from main
memory tended to yield two benefits: not only could we
then issue instructions fast enough to saturate the bus, but
we could also have a second set of eight floating point
stack locations by which we could unroll things. Because
there were two benefits, this enabled some memory-bound
codes to enjoy greater than the 15 percent improvement
possible from just saturating the bus. In fact, some
memory-bound codes when run on two CPUs actually
achieved around a 30 percent benefit. (Naturally, cache-
bound codes often achieved a 2x improvement.)

Unfortunately, using two CPUs is sometimes a double-
edged sword: accessing different DRAM pages always
caused an expensive stall. Although this can and often
does happen with a single CPU, it happens far more
readily with two CPUs. When using the second processor,
the best method is to access alternate cache lines in the
same DRAM page. This will allow codes to make
effective use of 16 floating point stack locations instead of

just 8, and will also prevent the thrashing of memory
(page miss penalties) if the different CPUs are working on
entirely different DRAM pages. Another big benefit of
alternating cache lines is that each processor avoids
having to snoop modified cache lines from the other
processor’s caches.

The difficulty with studying simple kernels is that the
critical cases that actually occur in practice are sometimes
overlooked. We found our simple examples of moving
data from a single vector in L2 or main memory onto the
floating-point stack to be insufficient. We therefore
launched a study involving the movement of two vectors
at the same time, which we found to be simple enough to
optimize and realistic enough to capture the major
bottlenecks.

Using our new set of kernels, we made several
interesting observations. For starters, we found that
accessing data from L2 onto the floating point stack
tended to run at 800 Mbytes/sec in this somewhat more
realistic mode. We found this a little disappointing since
it represented only just over half the bandwidth
theoretically possible. We also studied the impact of
touching one vector from main memory and another from
L1. This has a theoretical bandwidth of 16 /
((8/1526)+(8/508)) = 763 Mbytes/sec; however, it was
often harder to achieve more than 530 Mbytes/sec. This
implied not only that there was no overlap when loading
from the two separate places but that the two loads
interfered with one another. For touching two vectors
from memory, we found that pre-touching at least one of
them first with integer touches in small enough chunks to
keep the data in L1 allowed performances up to 320
Mbytes/sec out of a possible 508.

We have illustrated how using the registers effectively
can improve performance. There are several cases where
simply not having enough registers hurts performance.
The application CTH, illustrated in greater depth later in
this paper, is a case where the same code and same data
set tends to produce more loads on IA-32 than other
architectures. Another example is an application called
MPSalsa, which was a Gordon Bell (fastest real
application running on a supercomputer) finalist at IEEE’s
Supercomputing 1997. At the core kernel, there were a
series of matrix vector products from memory. Since the
size of the vectors were small (around 24), they should
have been able to fit into floating point registers. Instead,
there was a significant overhead introduced by
interleaving loads from memory with loads from L1 as
described above.

Intel Technology Journal Q1’98

5

Putting It All Together
We concentrated on a single floating point kernel

called element vector multiply (EVM). This kernel sets
X(i) = Y(i)*Z(i) as i goes from one to one million with
double-precision vectors X, Y, and Z. Since this involves
24 million bytes of data, it is clearly a problem coming
from main memory. Note that the write-back, write-
allocate nature of L2 suggests that each operation involves
loading X(i), Y(i), and Z(i), and then storing X(i). This is
4 doubles moved from main memory, which theoretically
could be done in 4*3 CPU cycles, or one flop done every
12 CPU cycles. On a 200 MHz processor, that would
suggest 16 MFLOPS or so. However, observed
performance was 4 or 5 MFLOPS. We then set out to
determine where the loss of performance was going given
what we learned about simple memory movement kernels.

DRAM page misses are just one slowdown. The read
of Y(i) followed by the read of Z(i) causes a page miss
that halves bandwidth. We also have to read X(i) due to
the write-allocate write-back memory mode. This causes
another page fault. In write-back mode, data is only
written back to memory to make room for something else
to be brought into cache. This is eviction: one cannot
control when data will be evicted. There is a penalty for
intermixing reads and writes to memory. Recall that the
200 MHz Pentium Pro processor cannot keep the memory
controller completely busy, thus utilizing 85% of the
memory bandwidth.

We then set out to try to improve the speed. We
blocked the loop such that we streamed in about 4K of the
vector Y (about half of L1_data). This avoids the page
faults that we get for alternating reads of X, Y, and Z.
Then we loaded the vector Z into the other half of L1
(getting only one page fault for the initial read of Z). We
then performed the multiply X(i)=Y(i)*Z(i) over the
elements loaded into L1. This results in reading X(i) from
memory due to the write-allocate memory model. The
result X(i) is written to cache. We repeated this touching
Y, touching Z, writing X until about half of L2 was filled
with X's modified lines. Now if we were to continue we
would start to evict lines of X as we read in Y and Z. This
would cause page faults and drop performance back down.
Once about half L2 is filled with X, we could do a Cougar
instruction called flush_cache (which does the protected
assembler WBINVD instruction) to write the modified
data in the caches back to memory.

This blocking algorithm looks like:

for(sizeof(X/128K))
{

for(128K of X)
{

touch 4K of Y
touch 4k of Z
calculate 4k of X=Y*Z

}
flush_cache()

}
The touch of Y runs at about 425 million bytes/sec.

The touch of Z runs at about 390 million bytes/sec due to
having to evict the dirty lines of X from L1 to L2. The
multiply of 4k of X=Y*Z runs at about 200 million
bytes/sec. It was a bit mysterious that this performance
was not higher. The flush cache runs at 250 million
bytes/sec peak (our own versions of flush cache appeared
to run no faster).

The total throughput is then:
1/(1/425 + 1/390 + 1/200 + 1/250)
= 71.85 Mbytes/sec

written to X. The flops/sec is then 71.85/8 = 8.98
MFLOPS. This is still not close to the 16.6 MFLOPS, but
it is 50% better than the naive loop.

The final set of experiments we made was on write-
combine caching. Write-combined memory avoids reading
the data before you write it. Also, when writing a whole
cache-line, the write is “combined” and sent to the
memory bus as one request. Note that write-combine
doesn't read/write to the caches; rather, data is transferred
directly to/from memory so cache coherency issues have
to be addressed. Coherency can be handled by flushing
cache at the beginning of the EVM routine and, if
necessary, at the end of it also. We achieved about 16.8
MFLOPS with stride 1 write-combine EVM.

The write-combine memory model appears to be
useful in kernels that involve writing large pieces (greater
than L2 size) of contiguous data to memory. Using write-
combine on a Pentium Pro processor-based system proved
somewhat challenging; however, it is our untested
understanding that the methodology is much easier on
Pentium II processor-based workstations. If this is the
case, then a great deal of our efforts can be applied to
Pentium II processor-based platforms, thus enabling many
users around the world to take advantage of our work.

Hardware Counters
When running applications on the Intel ASCI Option

Red Supercomputer, it is often useful to know what
portion of the data is running from what portion of
memory. On a Windows NT box, a utility like Intel
VTune[5] might find this information. However, in our
operating system environment, more closely resembling
UNIX, this was not an option, especially on applications

Intel Technology Journal Q1’98

6

too large to fit on a single workstation. Therefore, we
accessed the hardware counters directly. The ones we
found most useful for studying memory movement were
PP_DATA_MEM_REFS (0x43), PP_L2_LINES_IN
(0x24), and PP_DCU_LINES_IN (0x45). Assuming that
the number of references per element in every cache line
accessed was the same, reads and writes rarely
overlapped, and that the vast majority of data references
were all double precision loads to the floating point stack,
we generated the following observations:

The fraction of data from Memory, FracM, is

REFSMEMDATAPP

REFSMEMDATAPPINLINESLPPMIN
FracM

)___,4*__2_(
�

The number of L2 and L1 hits is

PP_DATA_MEM_REFS-PP_L2_LINES_IN*4,

and the number of just L2 hits is
MIN(ABS(PP_DCU_LINES_IN - PP_L2_LINES_IN)*4,
PP_DATA_MEM_REFS)

The fraction of data from L2 is then

)_1___2__(

)0.1(*)_2__(
2

hitsLofNumberhitsLofNumber

FracMhitsLofNumber
FracL

�

�

�

The fraction of data from L1 is then
FracL1 = 1.0 - FracM - FracL2.

While the foregoing assumptions are simple and do

not always apply, they gave us a useful estimate to work
with. We could then apply this estimate to our
observations about the overheads incurred when accessing
data from the various levels of memory resulting in overall
performance estimates for an application. For example,
we discussed earlier that five cycles are typically used to
access four elements from L1, so that the minimum
number of cycles for accessing the data that was in L1
might be 1.25 * FracL1. Similarly, fudge factors of 1.59
existed for FracL2, and 3.57 (or 3.13 if dual processor)
for FracM. An example of a situation where we used this
is shown in the discussion on the application CTH.

Performance Tracking
Most of the early applications work on the Intel ASCI

Option Red Supercomputer was designed to validate the
soundness of the system design and its ability to scale to
thousands of nodes. This work was quite successful with
several applications (including some full production
applications) running on up to 4500 nodes.

While it is important that the ASCI Option Red
Supercomputer functions correctly, it is equally important
that the system delivers the expected performance. To
track system performance, we created a performance
benchmark suite. The goal of this suite was to produce a
handful of numbers to assess system performance. The

System si238 si58 babyflop
Software Release WW34a_1 WW45 1.2 WW39
Date tests were ran 9/17/96 12/31/96 12/4/97
Livermore Loops

AM MFLOPS 33.9 42.6 48.3
GM MFLOPS 29.6 33.9 38.9
HM MFLOPS 24.3 25.9 29.1
Minimum MFLOPS 5.9 5.7 6.0
Maximum MFLOPS 61.4 111.8 118.4
Standard Deviation MFLOPS 16 28.4 29.4

Comtest
Bandwidth - MBytes/sec 272.4 302 302
CSEND Latency -�secs 12 10 9

Stream Test
Copy MBytes/sec 85.9 109.1 114.9
Scale MBytes/sec 107.2 108.6 108.7
Add MBytes/sec 128.7 129 130.0
Triad MBytes/sec 128.5 129.3 129.4

Matrix Multiply
F77, per-node MFLOPS 62.4 54.6 55.3
libkmath, per-node MFLOPS 119.4 111.1 112.3

Table 1: Results from the performance tracking benchmark suite. The tests are not strongly dependent on
the number of nodes. These particular tests used four nodes. None of these tests used the second processor for
computation. The System names refer to internal systems at Intel.

Intel Technology Journal Q1’98

7

performance tracking suite includes the following codes:

Livermore Loops: A measure of the performance of
the Fortran77 compiler with loops typical to
scientific computing. The arithmetic (AM),
geometric (GM), and harmonic means (HM) are
reported as well as the range and standard deviation
in the MFLOPS.

Comtest: Measures the bandwidth, latency, and
standard deviation for a pair-wise, nearest neighbor
ping-pong test.

McCalpin Stream: Measures performance of
memory intensive applications [9]. Specific tests are
vector copy, element-wise scale and add, and the
triad (i.e., a(i)=a(i)+b(i)*c(i)).

Parallel Matrix Multiply: Measures performance of
a parallel matrix multiply. The performance per node
is reported in MFLOPS for a 4-node multiplication
of order 300 matrices.

The performance levels are reported in Table 1 for
several dates spread out over the course of the project.
The numbers have largely stabilized, and significant
additional improvements are not anticipated. The
Livermore Loop and Stream test numbers are in the same
ballpark as those from other high-end workstations. The
communication numbers are among the best ever reported
for an MPP system. Finally, the matrix multiplication
numbers provide a measure of compiler performance by
comparing MFLOPS rates for compiled and assembly-
coded multiplications. The compiled code is a factor of
two slower than the assembly code, which is not unusual
compared to Fortran compilers on other high-end
workstations.

These tests provide a good relative measure of the
system performance. They are not very good, however, at
detecting systematic errors in the system’s performance.
To resolve this issue, we needed a benchmark for which
we have an analytic performance target. If we match this
target, then we know our system is performing as it
should.

An application well suited to this type of analysis is
MP Quest [13], an ab initio quantum chemistry program
developed at the Sandia National Laboratories. In an
earlier study[10], we analyzed the nboxcd() kernel from

MP Quest. This kernel resembles a modified dense matrix
multiply operation. Our analysis showed that this kernel
should run somewhere between 110 MFLOPS to 130
MFLOPS (depending on the state of the L2 cache prior to
the kernel's operation).

We created a stand-alone benchmark program based
on this kernel. Table 2 compares results for these tests
built with the PGI compiler and the Intel C/C++ Compiler
for Win32*systems. Three different releases of the PGI
compilers are included: 9/96 (release 1.1), 12/96 (release
1.2-5), and the 12/97 (release 1.6-3). The Intel C/C++
compiler (9/96 release) is the Pentium Pro processor
reference compiler developed by Intel. These single node
computations were carried out on a 200 MHz -based node.
These tests used two forms for the benchmark: one with
the original code and the other with the loops unrolled.
The expected optimum performance ranges are from 110-
120 MFLOPS.

The Intel C/C++ compiler hits the target performance.
This compiler is highly optimized for the Pentium Pro
processor so its high performance is not surprising. The
PGI compilers are well short of the target performance.
(PGI is still working on the compiler, however, and future
releases will hopefully close the gap.)

MP LINPACK Performance
MP LINPACK is a well known benchmark for high

performance computing. The benchmark measures the
time it takes to solve a real double precision (64 bits)
linear system of equations with a single right-hand side.
On December 4, 1996, we set a new world record for MP
LINPACK by running the benchmark in excess of one
TFLOPS. At that time, the Intel ASCI Option Red
Supercomputer was only 80% complete, but that was
more than enough to break the MP LINPACK TFLOPS
barrier. Actually, the previous record was 368 GFLOPS
so we did not just break the record, we shattered it!

While the rules for the LINPACK benchmark require
use of the standard benchmark code, MP LINPACK lets
you rewrite the program as long as certain ground rules
are followed [6]. Our MP LINPACK code used a two-
dimensional block scattered data decomposition with a
block size 64 [9]. The algorithm is a variant of the right
looking LU factorization with row pivoting and is done in

Code PGI 9/96

(Rel 1.1)

PGI 12/96
(Rel 1.2-5)

PGI 12/97
(Rel 1.6-3)

Intel C/C++ Compiler

Original Kernel 26 56 67 83

Kernel with unrolled loops 30 75 87 120

Table 2: Performance in MFLOPS for the NBOXCD() Kernel from MP Quest.

Intel Technology Journal Q1’98

8

accordance with LAPACK [1]. The parallel
implementation [4,8,15] used a two-dimensional processor
mesh and did a block wrapped mapping of the matrix.
Columns of processors cooperated synchronously to
compute a block of pivots that were then passed
asynchronously across the rows. A look ahead pivot was
used to keep pivoting out of the critical latency path. We
report timings for real floating point operations and not
"macho" FLOPS obtained by using Strassen [14] (or
Winograd [16]) multiplication. The code explicitly
computed all the relevant norms and did several rigorous
residual checks to guarantee accuracy. The matrix
generation was identical to ScaLAPACK version 1.00
Beta, which is a standard MPP package for Linear
Algebra [2].

The benchmark results are maintained in the
LINPACK Performance Report: "Performance of Various
Computers Using Standard Linear Equations Software" by
Dr. Jack Dongarra at the University of Tennessee [6]. He
has accepted our TFLOPS entry into his 12/16/96 report,
which is available on the web [6], e-mail, and ftp. RMAX
was 1.068 TFLOP, NMAX or N was 215000, and N1/2
was 53400. N1/2 is the minimum problem size (to the
nearest 100) such that half the RMAX performance was
achieved. That is, over half a TFLOP was achieved on
this machine using a problem size of 53400. The RMAX
was found on 12/4/96, and N1/2 was found on 12/6/96.
The number of floating point operations done is roughly
(2N^3)/3 for a problem of size N.

The MP LINPACK 1.3 TFLOPS run (on 6/9/97) was
run on 9152 Pentium Pro (TM) 200 MHz processors.
RMAX was 1.338 TFLOPS. NMAX or N was 235000.
N1/2 was 63000. Both runs used MPI.

The code for the 1.06 TFLOPS MP LINPACK record
was derived from programs used to set earlier MP
LINPACK records on Intel’s Paragon supercomputers.
The initial implementation was based on work by Robert
van de Geijn [15]. The Delta code was modified to run on
the Intel MP Paragon and it used hand-tuned Intel i860
processor assembly code kernels. For the TFLOPS
benchmark, these kernels were written in x86 assembly
code. For a detailed description of the techniques and
algorithms used in this code, see the paper by Bolen et. al.
[4]. Our past work with MP LINPACK has shown that for
very large problems, at least 93% of the runtime is
consumed by the BLAS-3 matrix multiplication code,
DGEMM (which computes C=C-A*B). The dual
processor code for large DGEMM problems ran at 345
MFLOPS.

Increasing Parallel Efficiency
We employ many techniques to increase parallel

efficiency once a code has already been initially scaled.
For MP LINPACK, we used the lookahead pivot
technique described above. We also used a common

optimization technique based on the observation that
memory-to-memory copies tend to run at very slow speeds
like 80 Mbytes/sec (see our previous results on element
vector multiply) but the communication bandwidth of the
machine is closer to 400 Mbytes/sec. This means that if
an incoming message needs to be copied from an
operating system into a user buffer, this takes more time
than sending the message. When one posts a message
ahead of time, and sends a “handshake” to tell a node it is
ready to receive the message (a delicate process since we
don’t wish to introduce bottlenecks), the communication
overheads go down, which enables a code to scale to more
nodes. Sometimes it is even faster for a node to send a
message to itself, than to call memcpy().

In some cases, we have to reduce I/O to assist in
scalability. This is beyond the scope of this paper.

Matrix-Matrix Multiplication
The matrix-matrix multiplication behind MP

LINPACK is an upper product update of the form C = C -
A*B where C is large with usually slightly more rows than
columns, and the number of columns of A (and rows of B)
is typically small (in our case 64). Disregarding notations
contained elsewhere, suppose C is MxN, A is MxK, and B
is KxN, where M>=N>>K.

DGEMM has 2*M*N*K flops and at least 2*M*N +
M*K + K*N memory references. If K is sufficiently
large, cache re-use will be higher, and the loading and
storing of C will be amortized. We typically block A into
chunks that fit into L1, and B into chunks that fit into L2,
and then complete the relevant portion of C before
proceeding to the next chunk of A or B. Because L1_data
is 8 Kbytes and 2-way set associative, we have found that
it is unwise to use more than 4K of data for A in any one
given time. For K=64, solving for 8 rows of C by copying
8 rows of A into a scratch space and doing the multiply is
ideal for several reasons[8]. First, this means that 8*64*8
= 4096 bytes of A will hopefully remain L1_data cache
resident. Since there is no convenient instruction for
accessing across a row, and we would prefer to avoid
continually updating the integer registers, copying A into
a contiguous space helps side-step this problem because
we can change the storage format of A. A DGEMM
implementation on top of this is also beneficial because
the issue of A or A transpose (another DGEMM option)
becomes irrelevant since we always assume a copy of
A[7]. Furthermore, we would prefer to process a number
of rows that are a multiple of the cache line size to avoid
additional cache movements when the initial arrays are
aligned on cache-line boundaries.

An outer-level blocking outside the row blocking is
done on the columns of B and C so that B always remains
in L2. For unfavorable leading dimensions of B, another
copy can be done on B. However, this can be avoided

Intel Technology Journal Q1’98

9

within the context of a careful MP LINPACK
implementation.

Due to a limitation of the number of floating point
registers, the actual inner DGEMM kernel can only
access a column of B or C at a time. Furthermore, even
though it may be working on eight rows of C, it can only
do so with four rows at a time (a cache line size). Each
row can be thought of as an independent dot product,
requiring a floating point stack location. Accesses to A are
repeated each time a multiply is necessary, but fortunately
we block A to be L1_data resident. Accesses to B,
however, can be amortized over the four different dot
products. Furthermore, to reduce the overhead of latency
to L2, we typically keep two B's around, which in effect
pre-touches the next B needed several cycles before it is
first used. This effectively uses seven of the eight
available floating point stack locations (four for the four
dot products eventually going into C, two for B, and one
for A loads). The whole length of all four dot products are
unrolled to minimize overheads.

An unexpected benefit (about a five percent
improvement) was observed by including the "fxch"
floating point exchange instruction in selected points
within our assembly DGEMM. Ironically, the fxch
instructions were inserted in locations that did not impact
the final result. That is, just before adding stack location
0 to 1, we would occasionally exchange stack location 0
and 1 first, thus adding stack location 1 to 0.
Commutativity ensures these are the same, but apparently
internal registers allocated to the tasks by the micro-
operations treated the two situations somewhat differently.
At one point we believed that the unnecessary fxchs were
throttling the rate of the retiring instructions, bringing
them in sync with the decoding instructions. But we also
found that the spurious fxchs were only beneficial when
data was running from cache. Around memory
movements, taking some of the fxchs out again improved
performance further. (This makes sense since something is
more likely to occur around the large latency of a memory
touch.) Although the fxch is supposed to be a "free"
instruction, it takes up space in the reservation pool which
has a limited capacity of 40 micro-operations. Exceeding
this capacity leads to a stall.

We also used integer touches to pre-fetch C before it
was needed. In effect, we would touch a cache line of C,
do the 4 dot products, and then load C in to add it to the
results.

Finally, when things were optimized on one processor,
we split the matrix multiply up on two CPUs to maximize
single node performance. Recall that a certain number of
columns were blocked off of B and C to keep a strip of B
in L2. The resulting matrix multiply was further stripped
into groups of rows such that the relevant portion of A
would remain inside the L1_data cache. We simply had
one CPU take the odd group of rows and the other take

the even so that both CPUs would be working on distinct,
but close, portions of memory. Since B is not written to,
having both CPUs share chunks of B in their respective
L2 cache is not a problem.

Pieces of the DGEMM created for MP LINPACK
were ported into the Intel Math Kernel Library currently
available for Windows NT [5,7].

Other BLAS
MP LINPACK also relies partially on a matrix

triangular solve with many right-hand sides. The upper
triangular matrix is small (64x64), but the right-hand sides
are large. We found that assembly tuning pieces of the
upper triangular solve, interleaved with calls to DGEMM,
yielded very high performances. The right-hand sides
were split between the processors.

We are currently involved in providing UNIX-gnu-
based optimized BLAS (and FFTs) for the Intel ASCI
Option Red Supercomputer. But we also have efforts
underway to provide extended precision math kernels.
IA-32 naturally does work in 80-bit arithmetic. If we
make an effort to directly support computation done in
this framework (special IA-32 instructions exist for
loading and storing 80-bit quantities to get around the 64-
bit conversions), then some iterative codes might run
faster. It is unlikely that the MFLOP rate will go up since
doing 80-bit memory transactions is slower than their 64-
bit counterparts (bus widths are usually 64-bits). However,
the increased accuracy could enable less work to be done
to ensure a final acceptance criterion, which would mean
getting the answer faster. We are also looking into
software-extended formats such as 160-bit arithmetic for
this machine.

An Application Example
CTH is an Eulerian-Lagrangian code used at Sandia

National Laboratories for shock physics studies. It
contains approximately 440K lines of Fortran code,
spread among ~1600 files. A parallel version of this code
was developed for the Intel Paragon supercomputer at
Sandia prior to the installation of the ASCI Option Red
Supercomputer. Studies of this code showed that it scales
nearly linearly with the number of computational nodes
employed, suggesting that this code is appropriately
balanced from the “massively parallel point of view.”
This code is in continuous use on the Intel ASCI Option
Red Supercomputer and has been run for extended periods
(~150 hours) on a sizable number of nodes (2048), as well
as having had a few limited runs on 4500 nodes, using
over 100 Mbytes of the 128 Mbytes available per node.
(It should be noted that the limiting factor on the duration
of the full-machine runs was the machine schedule, rather
than any hardware or software problems.) This is clearly
a real application that can take advantage of the full
system, and one where getting the optimal performance

Intel Technology Journal Q1’98

10

has a real payoff. For example, a ten percent
improvement would cut a 150 hour run down to 135
hours, shaving off over half a day, which is useful since
management is often waiting on the answers and the
queues for future runs are usually full.

Initial discussions with the CTH group revealed that
the serial version of CTH, which runs on a wide variety of
platforms, does not have well-defined kernels that could
be tuned to provide significant speedup to the full code.
Nevertheless, we examined a few of the most significant
routines in order to spot repeated patterns that might be
improved wholesale. The 3D EFP problem was chosen as
a representative data-set for work on the CTH code.
Profiling indicated that one of the most significant
routines was ELSG, which is around 3700 lines of code.
Using the ideas presented earlier in this paper, we
investigated the performance of this routine.

We used the performance counters to gain an
understanding of the memory characteristics of this code.
This showed that the program's performance was bounded
by the costs of memory movement, a surprising result
given that the data appeared to be in the caches. More
specifically, we found that the fraction of data from L1
was .85, the fraction from L2 was .12, and the fraction
from memory was .03. Given the number of floating point
operations based on the PP_FLOPS counter, this implied
the maximum achievable performance for the particular
data set was 27 MFLOPS. The actual performance was
around 17 MFLOPS. Additional losses were due to branch
misprediction, speculative execution, floating point
dependencies, and other trouble spots.

We then took the major routine and created two
instances of it, one for each CPU. Each CPU then did half
the work with appropriate synchronizations being added to
ensure correctness. The modified code ran slightly slower
than the original code. Normalizing the original code's
time to 1.0, the modified code ran at 1.13. The dual
processor code ran at 0.61. Perfect speed-up was not
possible because not every computation could be
parallelized.

There were several other significant observations. We
tried to avoid latency stalls associated with computing
logical values by precomputing them, combining them, or
removing them when possible. We used reciprocals when
appropriate in order to minimize divides. We interlaced
independent calculations to avoid floating point
calculation stalls. We used the monitors to see where the
data movement was going, and ended up achieving about
60-70 percent of the peak observable based on the
memory movement.

One of the important functions of a supercomputer is
the ability to run extremely large problems on an
extremely large number of nodes reliably. CTH is an
example of an application that has done just that. It has

not only run on the full machine, but it has done so for a
large number of uninterrupted hours.

Conclusions
The Intel ASCI Option Red Supercomputer is in

routine production use. The machine is successfully
addressing the problems that motivated the DOE to
purchase it. One feature of the machine that we haven't
talked about is its ability to rapidly switch between
classified and unclassified operating modes [12]. While
this isn't a performance issue, it does make the machine
more broadly usable and therefore impacts the application
programmer directly.

Performance on such a complex machine means many
things. It means understanding single node performance,
and knowing where the memory bottlenecks lie. In this
paper, we have briefly discussed some of our more
important findings in that area. It means understanding
where the cycles are going for applications like CTH
using tools such as the hardware counters. It means
taking the care to do specialized tunings like
asynchronous message passing and lookahead pivots to
make codes like MP LINPACK parallelize well across a
large number of nodes. It means experimenting with
techniques like write combine memory to see when this is
most beneficial. It means creating a performance suite to
ensure that the compiler and the operating system are
always running at optimal speeds.

Our performance and optimization studies are an
ongoing effort. In this paper we have highlighted some of
the major efforts and discoveries. Our final goal is to
obtain correct codes running as fast as possible. We have
demonstrated high theoretical peaks for important
benchmarks like MP LINPACK. Application codes have
been running on the machine for over a year now, even
though we completed this supercomputer in June 1996.

Acknowledgements
Many people have worked on the MP LINPACK

benchmark over the years. In addition to Greg Henry's
work on the program, valuable contributions were made
by Robert van de Geijn (University of Texas in Austin),
Bob Norin (Intel Corp.) Brent Leback (Axian Corp.),
Stuart Hawkinson (Axian Corp.), and Satya Gupta (Intel
Corp.).

References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J.,

Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorenson, D.,
LAPACK Users' Guide, SIAM Publications,
Philadelphia, PA, 1992.

[2] Blackford, S., Choi, J., Cleary, A., D’Azevedo, E.,
Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S.,

Intel Technology Journal Q1’98

11

Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C., ScaLAPACK Users’ Guide, 1997,
SIAM Publications, Philadelphia, PA 19104-2688,
ISBN 0-89871-397-8.

[3] “Computers�Design Issues and Performance."
Technical Paper in Supercomputing 1996, Proceedings
of Supercomputing '96, Pittsburgh, Pennsylvania,
http://www.supercomp.org/sc96/proceedings.

[4] Jerry Bolen, Arlin Davis, Bill Dazey, Satya Gupta,
Greg Henry, David Robboy, Guy Schiffler, David
Scott, Mack Stallcup, Amir Taraghi, Stephen Wheat,
LeeAnn Fisk, Gabi Istrail, Chu Jong, Rolf Riesen,
Lance Shuler, "Massively Parallel Distributed
Computing: World's First 281 Gigaflop
Supercomputer," Proceedings of the Intel
Supercomputer Users Group 1995,
http://www.cs.utk.edu/~ghenry/isug.ps.

[5] The Intel Performance Library suite,
http://developer.intel.com/design/perftool/perflibst/

[6] Dongarra, J.J., "Performance of various computers
using standard linear equations software in a Fortran
environment," Computer Science Technical Report
CS-89-85, University of Tennessee, 1989,
http://www.netlib.org/benchmark/performance.ps

[7] Greer, B., Henry, G.,"High Performance Software on
Intel Pentium Pro Processors or Micro-ops to
TeraFlops," Proceedings for Supercomputing 1997,
San Jose, CA.

[8] Gupta, S., Hawkinson, S., Henry, G., "Performance Of
Matrix Matrix Multiply (DGEMM) For MP-
LINPACK On Pentium Pro Processors," An Intel
Internal Whitepaper, January 1996.

[9] Hendrickson, B.A., Womble, D.E., "The torus-wrap
mapping for dense matrix calculations on massively
parallel computers," SIAM J. Sci. Stat. Comput.,
1994, http://www.cs.sandia.gov/~bahendr/torus.ps.Z

 [10] S. Gupta and T.G. Mattson, “Optimization of MP
QUEST for the ASCI Option Red System,” Intel
TFLOPS Project Research Report, 1996.

[11] Intel optimization manuals,
http://developer.intel.com/design/pro/manuals/242816.htm
and 242690.htm

[12] Mattson, T.G., and Henry, G, "The ASCI Option Red
Supercomputer," Proceedings for ISUG 1997,
Albuquerque, NM.

[13] Sears, M., MP Quest User Guide, Documentation
distributed with the MP Quest program.

[14] Strassen, V., "Gaussian Elimination is not Optimal,"
Numer. Math. Vol. 13, 1969, pp. 354—356.

[15] van de Geijn, R.A., "Massively Parallel LINPACK
Benchmark on the Intel Touchstone DELTA and
iPSC(R)/860 Systems," 1991 Annual Users'
Conference Proceedings. Intel Supercomputer Users'
Group, Dallas, TX, 10/91.

[16] Winograd, S., "A new algorithm for inner product,"
IEEE Trans. Comp., Vol. C-37, 1968, pp. 693—694.

[17] Pentium Pro Processor technical documents,
http://www.intel.com/design/pro/manuals/.

Authors’ Biographies
Greg Henry received his Ph.D. from Cornell University
in Applied Mathematics. He started working at Intel SSD
in August 1993. He is now a Computational Scientist for
the ASCI Option Red Supercomputer. He tuned MP
LINPACK and the BLAS used there-in. Greg has three
children and a wonderful wife. He plays roller hockey,
soccer, and he enjoys Aikido and writing. His e-mail is
henry@co.intel.com

Pat Fay is presently an Intel computational scientist. He is
responsible for assisting the Los Alamos National
Laboratory scientists in using the Intel ASCI Option Red
Supercomputer. He received his Ph.D. in Physics from
Clemson University in 1993 and a Masters of
International Business from the University of South
Carolina in 1987. His e-mail is pfay@co.intel.com

Ben Cole is the Intel computational scientist on-site at
Sandia National Laboratories. For his Ph.D. thesis, he
studied transport processes in particle accelerators,
comparing experimental results to a numerical model
implemented on a parallel architecture. He has a second
career as a father to an energetic three-year-old. His
e-mail is cole@co.intel.com

Timothy G. Mattson has a Ph.D. in chemistry (1985,
U.C Santa Cruz) for his research on Quantum Scattering
theory. He has been with Intel since 1993 and is currently
a research scientist in Intel's Parallel Algorithms
Laboratory where he works on technologies to support the
expression of parallel algorithms . Tim's life is centered on
his family, snow skiing, science and anything that has to
do with kayaks. His e-mail is
timothy_g_mattson@ccm2.hf.intel.com.

