

IPC / NPL PCB Problems Survey 2012

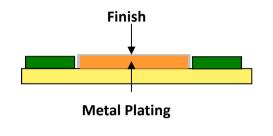
alpha

Surface Finish was the single most major contributor !

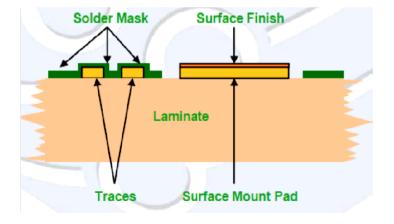
That's why we chose this topic to address !

What is a Surface Finish?

A surface finish may be defined as a "coating"


- located at the outermost layer of a PCB
- (which is dissolved into the solder paste upon reflow or wave soldering)

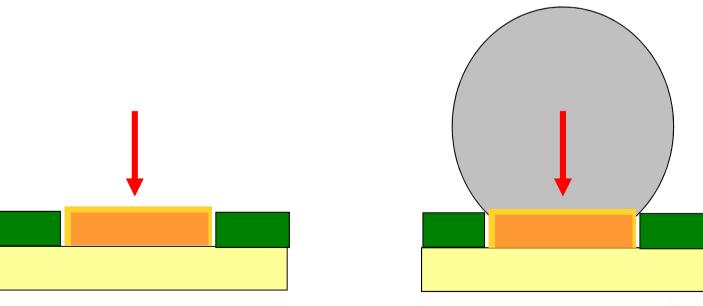
Two Main Types of Coatings


- Metallic
- Organic

Note:

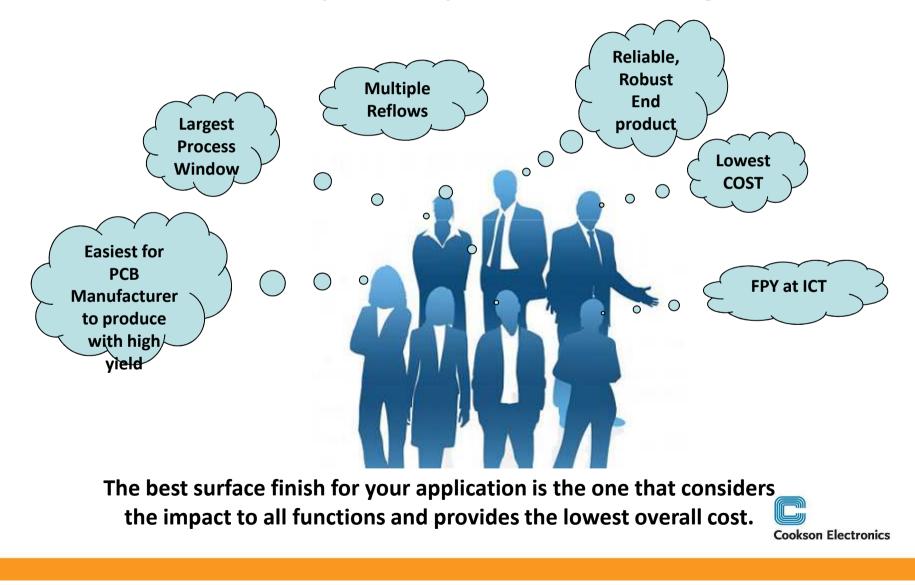
- (Base) Metal Plating is typically copper (in most cases).
- But, in a few (like ENiG) the Nickel-phosphorous

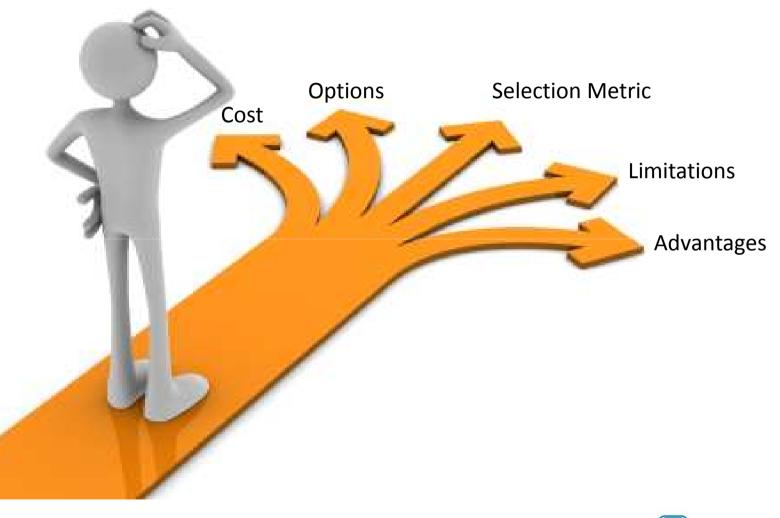
Surface



alpha

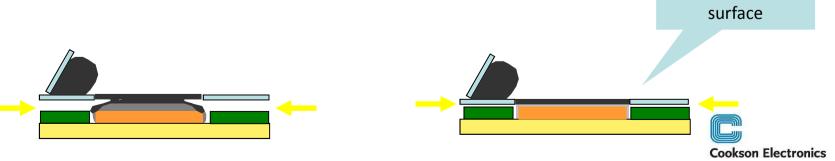
The surface finish protects the PCB Surface Copper until it's Assembled


Importance of Surface Finish


- Most important material decision made for the electronic assembly
- Influences the process yield, the amount of rework , field failure rate, the ability to test, the scrap rate, and of course the cost.
- One can be lead astray by selecting the lowest cost surface finish only to find that the total cost is much higher.
- The selection of a surface finish should be done with a holistic approach that considers all important aspects of the assembly.

alpha

Each surface finish has attributes that make it attractive for certain applications; however, this also implies that important tradeoffs are being made.



How to Select a Proper Surface Finish?

Reasons for Finishes

- Coplanarity (See Below)
- Lead-Free (RoHS and WEEE)
- Contact Resistance (Compression Connection)
- Tarnish Resistance
- Press-fit Requirements
- Wear Resistance
- Hardness
- Chemical Resistance
- Wire Bonding (Au or Al?)
- Cost
- Compatibility with other Surface Finishes

alpha

More Coplanar

Surface Finish Types

Organic Coatings:

- OSP (Organic Solderability Preservative)
- Carbon Ink (Screened on)
- (Or combinations of the two OSP and Selective ENIG or Hard Gold)

• Metallic Coatings:

- HASL (Hot Air Solder Level)
- ENIG (Electroless Nickel/Immersion Gold)
- 🥙 Electrolytic Ni /Au (Electrolytic Nickel / Gold)
- Imm Ag (Immersion Silver)
- Imm Sn (Immersion Tin)
- Reflow Tin/Lead
- Electroless Nickel/Palladium-Immersion Gold
- Selective Solder Strip (SSS)
- 🥺 Sn Ni (Tin-Nickel)
- ³ Unfused Tin/Lead
- ³ Electroless Nickel-Immersion Palladium

---- Not common

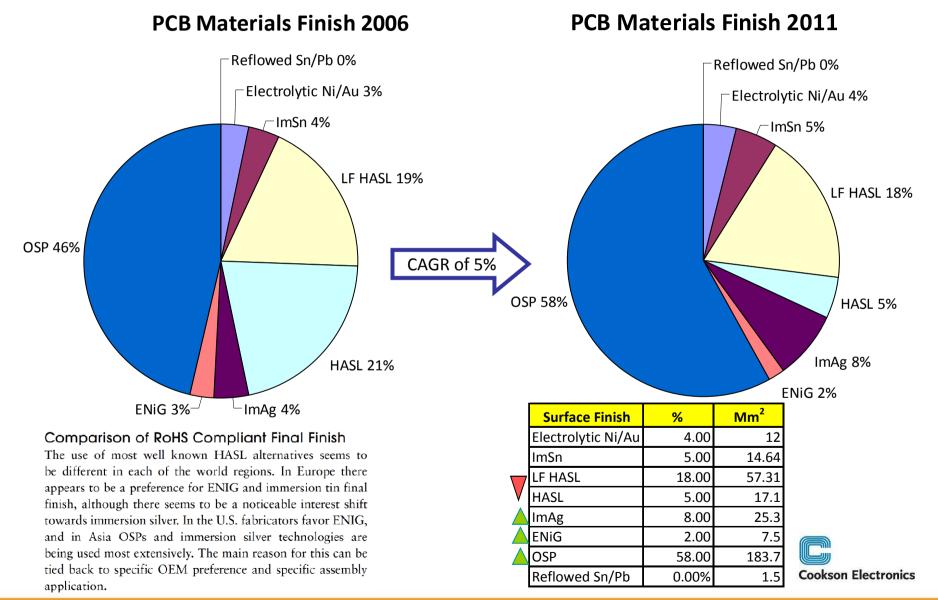
alpha

Courtesy : Multek

Key Product Considerations

Industry Segments

- Medical
- □ Aerospace/Defence
- Consumer
- **Consumer hand held**
- □ Automotive
- **Telecommunications**
- Industrial
- □ Lighting

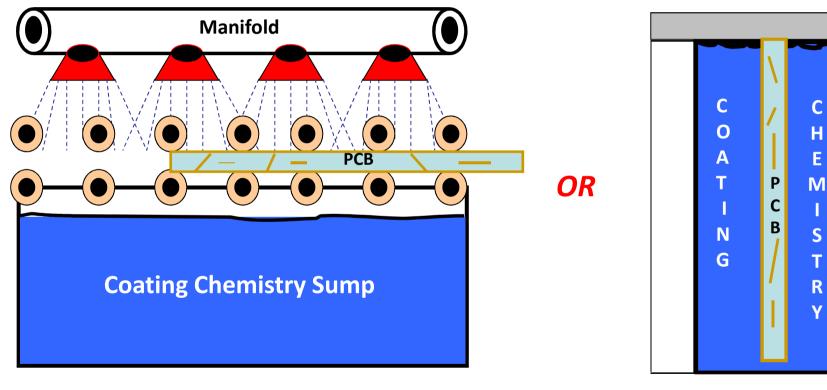

- ✓ What is the cost sensitivity of the product (how important is the surface finish cost)?
- ✓ What are the product volume requirements (high, medium, or low)?
- ✓ Is it a SnPb or Pb-free process?
- ✓ If Pb-free, is shock/drop a concern for your product?
- ✓ Is fine pitch assembly required (how fine)?
- What is the user environment (is corrosion a concern)?
- ✓ Multiple Reflow Cycles ?
- ✓ Is wave solder required and if so, how thick are the boards? Aspect Ratio ?
- ✓ Hole Fill ?
- ✓ Is high yield in-circuit testing required?
- ✓ Is wire bonding to the PCB SF required?

alpha

Surface Finishes Market Outlook

alpha

Source: Prismark


OSP (Organic Surface Preservative) emerging as a popular alternate surface finish

Dip Coatings

HASL (Hot Air Solder Level)

OSP (Organic Solderability Preservative)

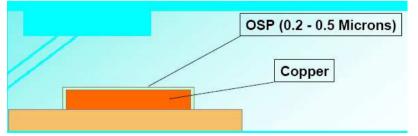
Conveyorized Dip Module

Vertical Dip Tank

alpha

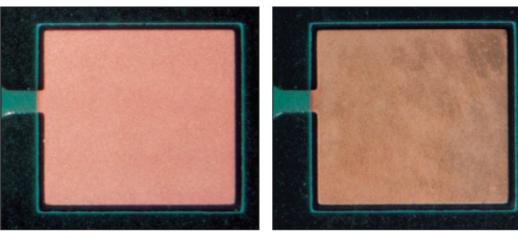
Courtesy : Multek

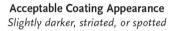
OSP (Organic Solderability Preservative)

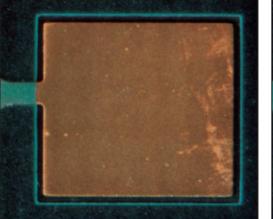

alpha

Typical Equipment used for the Coating of OSP

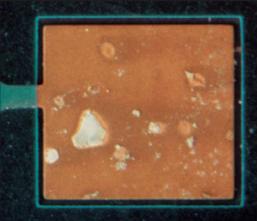
Conveyorized Horizontal OSP and Pre-Flux Line



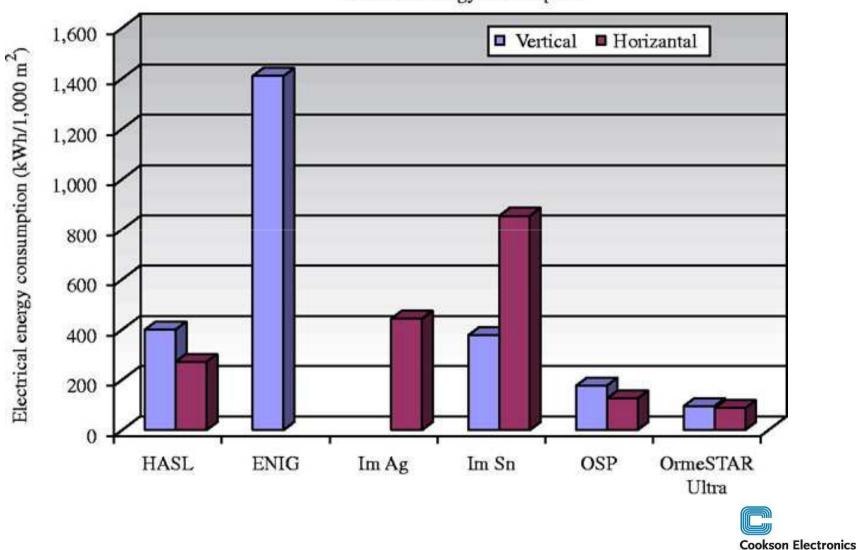



OSP Visual Inspection

alpha



Preferred Coating Appearance Uniform, matte pink color



Not Acceptable Coating Appearance Extremely dark

Not Acceptable Coating Appearance Crystalline or foreign material

Electrical energy consumption

OSP (Organic Solderability Preservative)

alpha

(Cookson Entek 106A(X), Shikoku Glicote SMD-E2L, Tamura Solderite)

Typical Thickness: 0.2 - 0.6 μm (8 - 24 μ in)

ADVANTAGES

- + Flat, Coplanar pads
- + Reworkable (at PCB Fabricator)
- + Doesn't Affect Finished Hole Size
- + Short, Easy Process
- + Low Cost
- + Benign to Soldermask
- + Cu/Sn Solderjoint

DISADVANTAGES

- Not a "Drop-In" Process
- (assy adjustments are required)
- Difficult to Inspect
- Questions Over Reliability of Exposed Copper After Assembly
- Limited Thermal Cycles
- Reworked at CM?; Sensitive to Some
- **Solvents Used for Misprint Cleaning**
- Limited Shelf life
- Panels Need to be Routed and Tested Prior to Coating (ET Probe Issue)
- Handling Concerns

(Entek 106A HT, Shikoku Glicote SMD-F1, Tamura WPF-21) Typical Thickness: 0.2 - 0.6 μm (8 - 24 μ in)

Typical Thickness. 0.2 - 0.0 µm (8 - 2

ADVANTAGES

- + Flat, Coplanar pads
- + Reworkable (by Fabricator)
- + Short, Easy Process
- + Benign to Soldermask
- + Cu/Sn Solderjoint

DISADVANTAGES

- Availability
- Not a "Drop-In" Process
- (assy adjustments are required)
- Difficult to Inspect
- Questions Over Reliability of Exposed Copper After Assembly
- Limited Thermal Cycles
- Reworked at CM?; Sensitive to Some Solvents Used for Misprint Cleaning
- Limited Shelf life
- Panels Need to be Routed and Tested Prior to Coating (ET Probe Issue)
- Copper Dissolution into Solder Volume
- Handling Concerns

ADVANTAGES

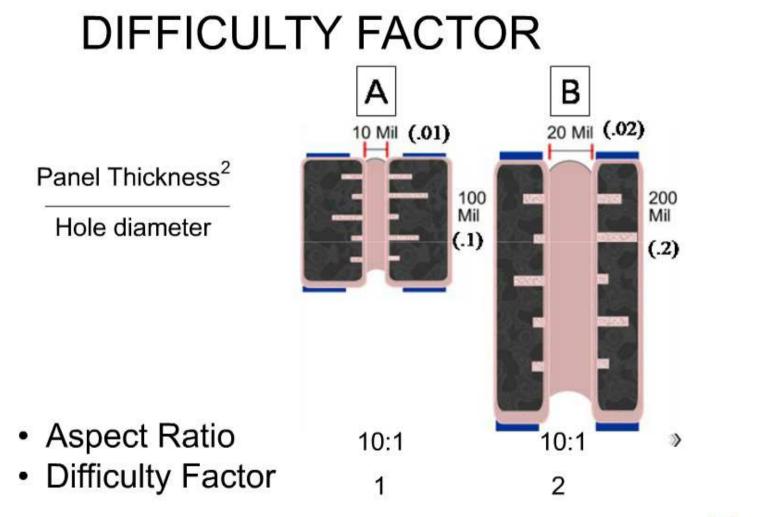
- + Advantages of OSP for SMT
- + Advantages of ENIG in through-holes
- + Cu/Sn Solderjoint
- + Can be used in Lead-Free

DISADVANTAGES

Complex process for PCB suppliersLarger

Currently being used in today's handheld portable products

(aka, Combi-Finish or SIT)



IPC 610-E Hole Fill Requirements

OSP – Process Challenges (TSVHF)

alpha

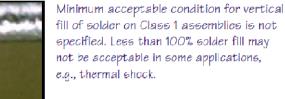
Top Side Vertical Hole -fill is driven by capillary action

Important parameters which can influence:

- Hole diameter,
- > PTH wall Quality
- > Hole aspect ratio,
- > Flux
- Wetting force,
- Contact Time
- > Selective Pallet Design

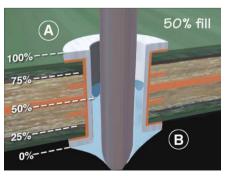
Solder will only fill as long as its molten

- OSP has lower wetting force besides Pb Free Solder Alloys.
- Risk of insufficient hole fill Can lead to single-sided architecture


Barrel - Vertical Fill of Solder

Acceptable

A minimum of 75% solder fill, or a total maximum of 25% depression including both component (primary) and solder (secondary) sides is permitted.


Notes:

OSP – Solutions (TSVHF)

Top Side Vertical Hole Fill

alpha

Solutions:

- Alternate Surface Finish (metallic)
- Aspect Ratio
- Increasing top-side preheat
- Increasing solder pot temperature
- Increasing the Contact Time
 - (Decrease Conveyor Speed Increased Board Temperature)
- Increasing the Wave Height (Wave Dynamics)

Criteria

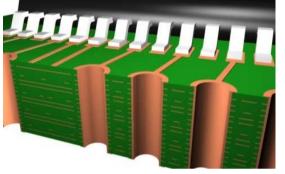
Wetting on primary side (solder destination side) daughter board land to PCA solder

Percentage of land area on PCA (mother board) covered with wetted solder on primary

Fillet and wetting solder connection width on secondary side (solder source side) of PCA

Percentage of land area on PCA (mother board) covered with wetted solder on secondary

✤ Not recommended!


Vertical fill of solder²

side (solder destination side)

side (solder source side)

connection width

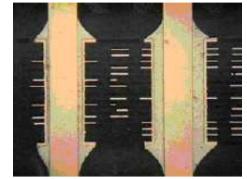
- Alternate wave solder alloy combined with the right Flux selection
- Preserve flux activity through preheat

Class 1

50%

50%

75%


0

75%

Class 2

75%

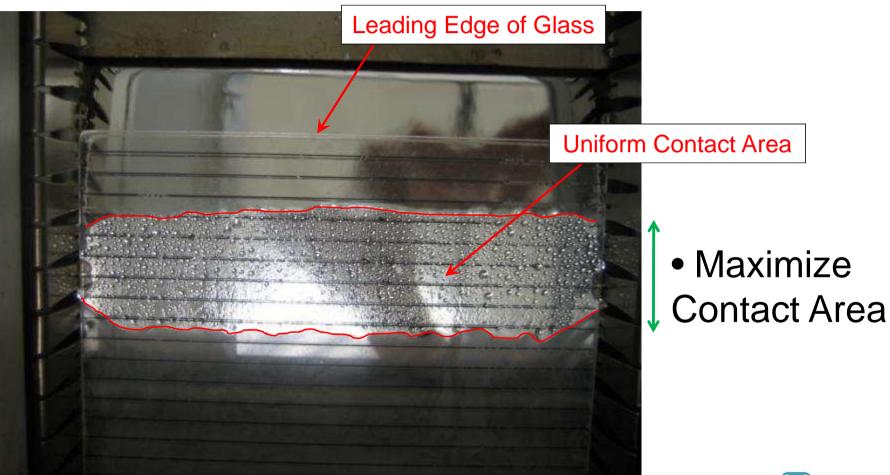
75%

	Alee
Lee	Cookson Electronic

Table 7-5	Board in Board - Mi	inimum Acceptable	Solder Conditions ¹
	Board III Board III	initiality receiptable	oonaon oonanaono

Note 1.	Wetted solder	refers to solder applied	by the solder process.

(mother board) to lands on both sides of daughter board.


Note 2. The 25% unfilled height includes both source and destination side depressions

Baseline

Good Wave Contact - MUST

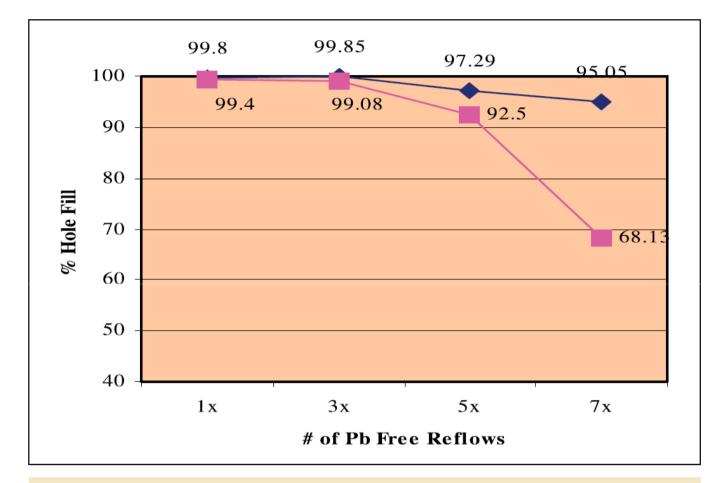
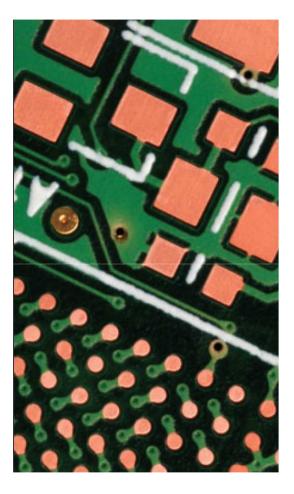
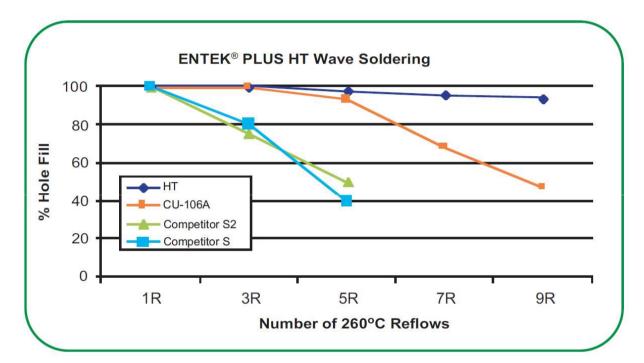


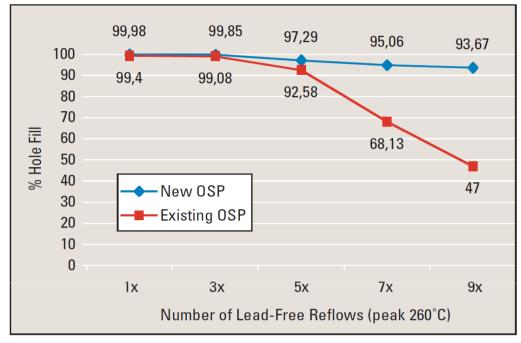
Figure 5. Through-Hole solderability of HT OSP and industry standard OSP (LS 500A flux, SAC 305 solder).


OSP - Advantages

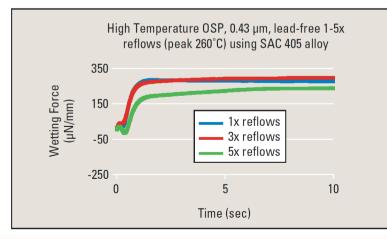
- Provides very flat solder pad surfaces and excellent compatibility for consistent and uniform solder paste application.
- Eliminates solder bridging defects that are commonplace in HASL finished printed circuit boards.
- Excellent solderability for both convection reflow and wave soldering.
- The organic coating does an excellent job eliminating copper oxidation. The solder joint exhibits a tin/copper intermetallic layer.
- Solder wetting is made directly on the copper solder pads to produce extremely strong and reliable solder joints.
- Copper has extremely good affinity to molten solder when it is clean and free of oxidation.
- The new HT OSP finish has the capability of at least 5 reflow cycles without degradation.
- The organic coating is dissolved by the presence of reflow heat and the flux activators in the paste.
- On double-sided SMT assemblies the organic coating is not degraded on the secondary side because it has not been exposed to solder paste flux activators.
- The finish has good rework-ability. In the event that defective coating is received, the material can be sent back to the supplier for recoating. Recoating is easy to do. The PWB is not exposed to structural degradation stemming from thermal stresses in the rework procedure.
- The selection of OSP does not limit supplier PWB availability. Most PWB suppliers offer OSP finishes.
- Under reasonably good ambient conditions the shelf life is about one year.



- a. Careful material handling procedures must be followed. **Gloves or finger cots** must be worn to protect the OSP coating material from **fingerprints**. Human salts are capable of degrading the coating such that the solder ability of the copper will be compromised.
- b. Strict practices and controls designed to eliminate misprinting of solder paste is paramount. Mechanical removal of the solder paste causes solder particles to be spread and imbedded inside via holes. Chemical removal of the paste degrades the organic coating. Alcohol and other alcohol-blended solvents dissolve about 75% of the coating material over the copper. Water cleaning removes about 15%. Board assemblies that have been treated with cleaning solvents to remove paste misprints must be processed with haste to avoid non-wetting defects resulting from oxidized copper.
- c. OSP finished printed circuit boards may not be suitable for RF circuitry assemblies. Most RF boards require a metal shield to be soldered and in contact to the grounding trace, thus providing the necessary shielding. The organic coating and the shield may not provide sufficient electrical shielding (no metal to metal contact).
- d. The OSP material **can give ICT test probes difficulty in contacting the test pads** on the board. More expensive multi-point test probes may be required in many cases. More frequent cleaning of the ICT test fixture probes will be necessary. An alternative solution is **to apply solder paste to the test pads** to ensure positive contact. This will not be possible if vias are used in place of test pads.
- e. Interleaving paper should be used to protect the OSP coating from abrasion damage during transit, where boards may slide against one other when stacked. An alternative method, and a more costly one, is to place individual boards in plastic bags.



ENTEK PLUS HT Capable of Pb-Free Reflows



ENTEK PLUS HT has demonstrated a 3x improvement versus other OSPs in Pb-free processes.

Through-hole solderability comparison for traditional and high temperature OSPs.

General recommendation Handling / Storage condition / Time

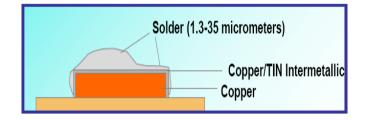
A. Handling Recommendations:

It is recommended that gloves are used for handling panels/circuits during all assembly processes. Or at the VERY least, handle the boards without touching the surfaces. Salts/acids from fingerprints will have a negative affect on the solderability.

B. Storage condition and time

The storage environment should not to exceed 30°C and 75% RH (except immersion tin). Boards should be stored in original vacuum packaging to limit air accessing the surface, and the board.

HASL or HAL


Hot Air Solder Leveling Or Hot Air leveling

HASL (Hot Air Solder Level)

alpha

LEADED Version

ADVANTAGES

- + "Nothing Solders Like Solder"
- + Easily Applied
- + Lengthy Industry Experience
- + Easily Reworked
- + Multiple Thermal Excursions
- + Good Bond Strength
- + Long Shelf Life
- + Easy Visual Inspection
- + Cu/Sn Solderjoint

DISADVANTAGES

- Co-Planarity Difference Potential Off-Contact Paste Printing
- Inconsistent Coating Thicknesses (on Varying Pad Sizes)
- Contains Lead
- Not Suited for High Aspect Ratios
- Not Suited for fine-pitch SMT and Grid Array Packages
- PWB Dimensional Stability Issues
- Bridging Problems on Fine Pitch
- Subjects the PCB to High Temp

HAL (Hot Air Level)

alpha

UNLEADED Version

Equipment being used for the Coating of Lead-Free HAL Same as for Leaded Versions but with a few Modifications

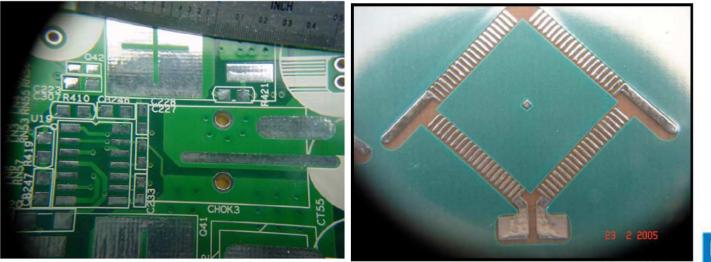
- Higher Temp Steel Solder Pots and Stronger Higher Temp Pumps (Effective heat transfer by improved alloy circulation)
- Pre-heat panel (pre-dip)
- Longer contact time with PCB
- High temperature resistant chemistries (oils and fluxes)
- Copper control (Drossing Dilution and Skimming)

HASL (Hot Air Solder Level) Lead-Free

Typical Thickness: 1-40µm

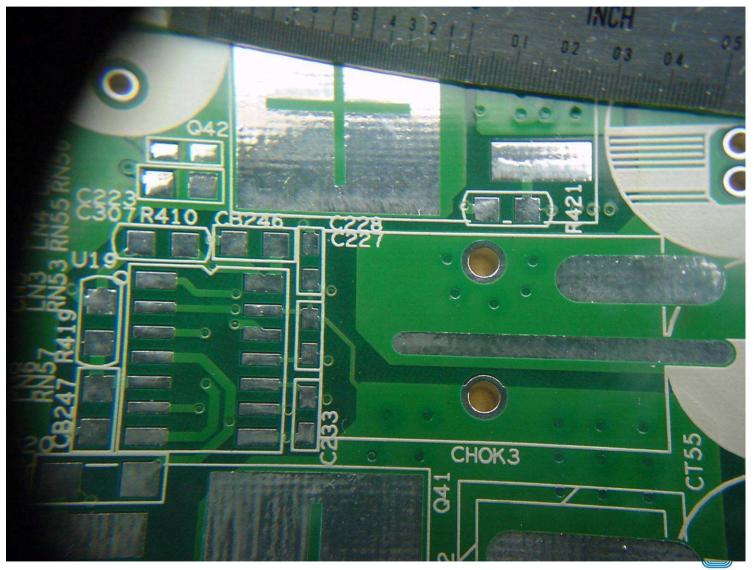
ADVANTAGES

- + "Nothing Solders Like Solder"
- + Easily Applied
- + Industry Huge Co-Planarity Difference
- + Long Experience
- + Easily Reworked
- + Multiple Thermal Excursions
- + Good Bond Strength Assemblies
- + Long Shelf Life
- + Easy Visual Inspection
- + Low Cost Not Suitable For HDI Products


DISADVANTAGES

- Not Suited for High Aspect Ratios
- Not Suited for < 20 Mil pitch SMT and BGA
- PWB Dimensional Stability Issues
- Bridging Problems on Fine Pitch
- Inconsistent Coating Thicknesses
- High Process Temperature 260-270 deg C

Lead-Free HASL


- Lead-Free HASL is a reality.
- Cookson Electronics have developed a low cost high reliability Lead-Free alloy that is suitable for the HASL process.
- The alloy has the lowest in class rates of copper dissolution and delivers vary flat pads even on the smallest pads.
- SACX delivers a flatter pad than traditional Tin Lead.

Lead-free HASL Surface Finish

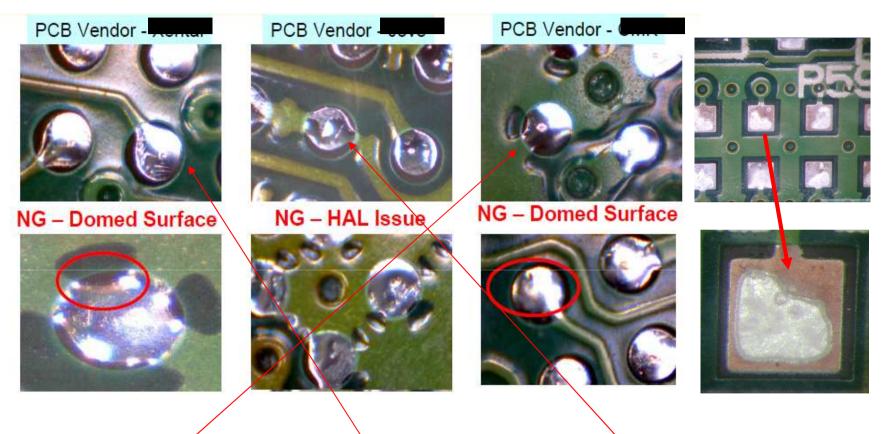
alpha

Cookson Electronics

HASL Challenges – at an OEM

- Major challenge for Cookson Technical Team was to control the failure of STB chassis at Functional Testing which was also reflecting at the field.
- Major cause of the chassis failure at FT is PBGA.

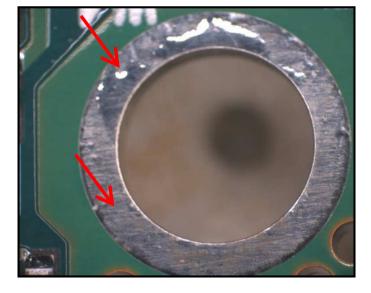
Product : Set Top Box IPC Class – 2 Model – STi5211 PCB Thickness – 1.6 mm Cu Layer – 04 Pad Finish – HAL Solder Paste – OM338-T45-SAC405 BGA Ball Alloy – SAC305

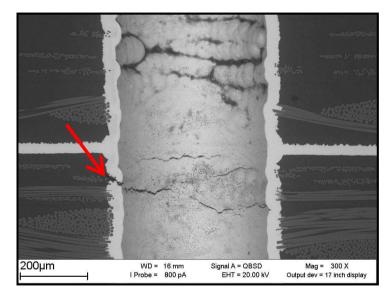

The Probable Causes Verified

BGA's Co- Planarity ? Solderpaste Height Temperature reflow **Big Board Warping's** Solderpaste Tackiness Spheres Oxidised.. **HASL Co-planarity**

HASL – a major variability

alpha


Major cause of the BGA solder joint failure is observed due to poor HASL finish of PCB.


- 1. Co planarity Uneven solder surface
- Too thin coating of HASL leading to migration after 1st reflow itself exposing copper.
 (Poor solder ability in the subsequent reflows)
- 3. Solder mask window uneven around the BGA pad.

HASL Surface Variability

alpha

PCB barrel cracking (see the picture), delaminations , bow and twist caused by solder bath thermal stress

What do experts say about HASL thickness?

alpha

coverage, and this will take time to get the best, consistent coverage. With users and suppliers working together, the process can

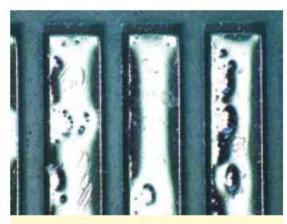


Figure 5. Solder mask residues.

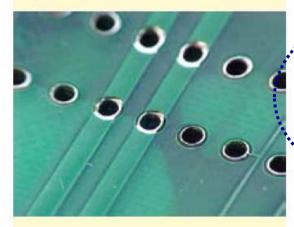


Figure 6. Poor bonding.

know the process and have considerable experience and data to support users and suppliers alike. The levelling process over the last 10 years has been demonstrating satisfactory coatings for lead-free in recent trials on tin/copper/nickel boards for the SMART Group workshops and production lines.

The results in Figure 8 are XRF measurements taken from sample boards during a SMART Group hands on workshop conducted in 2006. The boards featured a range of different pitches.

As a guide the following specification may be useful. It can used or modified for solder levelled boards. Further inputs to improve these suggestions are always welcomed by the author.

If specified all exposed outer copper suffaces shall be coated with solderable finish of tin/lead or lead-free on the surface of mounting pads, test points and plated through hole. The coating should provide a minimum of 12 months shelf life and meet the solderability requirements of the IPC or IEC standards using a wetting balance. The coating thickness should average be between 10-15 µm on specified pads.

Lead-Free Solder Levelled Experience 4 Thickness for pads with Sn/Cu+Ni+Ge

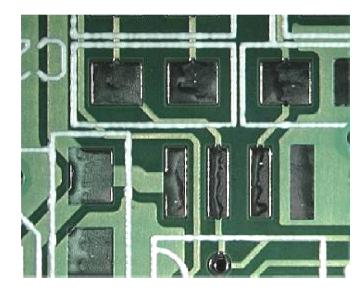
able solder is, test boards produced for the launch of a new wave solder design the "Omega" in 19 are still soldering well today!)

Nothing solders like solder, and its performance is getting better all the time!!

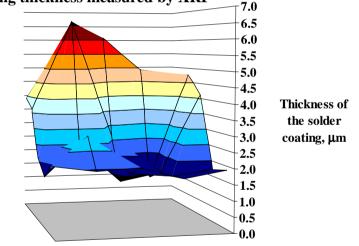
References

- EM&T/SMART Group Glossary "Jargon Buster"
- SMART Group Lead-Free Experience
 Report
- SMART Group training video "Guide to PCB Solderable Finishes"
- CEMCO Solder Levelling Systems
 Guide
- Shipley Solder Finish Assembly Evaluation Project

Bob Willis is a process engineer providing engineering support in conventional and surface mount assembly processes. He runs special production features at exhibitions and offers his seminars, workshops and PCB manufacture and assembly audits worldwide. These complement his own practical in-house hands on workshops. For further information go to www.ASKbobwillis.com.


Bob Willis is a process engineer providing engineering support in conventional and surface mount assembly processes. He runs special production features at exhibitions and offers his seminars, workshops and PCB manufacture and assembly audits worldwide. www.ASKbobwillis.com.

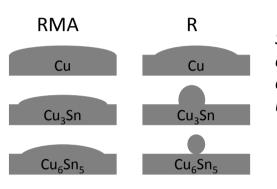
The Impact – an analysis by Cookson


alpha

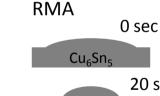
Thickness of the coating

It is a well known fact that finishes produced by the HASL method have non-uniform thickness of the solder coating. The thickness of the coating is determined by operating parameters. The coating should exhibit good-aging properties except for areas where the thickness of the layers is too thin

Mapping of one of the pads showing the difference in solder coating thickness measured by XRF



The areas with thin coating would have insufficient wettability after aging due to exposed intermetallic (IMC growth rate much slower at room temperature compare to the elevated temperatures, but still reaction does not stop. If solder layer was too thin, all tin would be consumed by Sn/Cu interfacial reaction)


Cookson Electronics

Wetting characteristics of the Cu, Cu₃Sn and Cu₆Sn₅ surfaces

Material /Flux	Wetting Angle (°)	Area (mm²)
Cu/RMA	3	72
Cu/R	16	19
Cu ₃ Sn/RMA	10-15	26
Cu ₃ Sn/R	93-101	4
Cu ₆ Sn ₅ /RMA	10-17	23
Cu ₆ Sn ₅ /R	180	0

Side view shadowgraph of the areas spread tests on Cu, Cu_3 Sn and Cu_6 Sn₅ using two different fluxes

Cu₆Sn₅

Cu_cSn₅

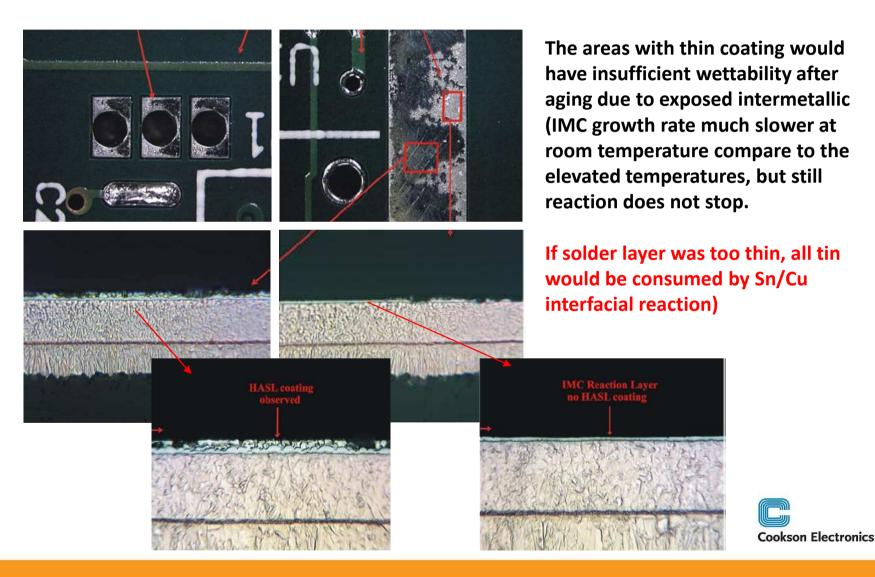
Note that:

RMA Activated rosin flux Non-activated rosin flux Side view shadowgraph of the areas spread tests on Cu_6Sn_5 after preoxidation at 235°C for various times

Conclusions:

R

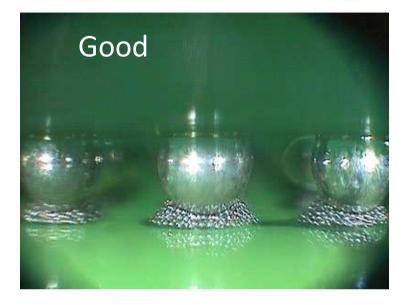
- 1. The wetting of the Cu_3Sn and Cu_6Sn_5 is poorer than Cu.
- 2. A strong degradation of the wetting of the intermetallic occurred with increased oxidation (SnO₂ and SnO was identified as a primary oxides formed on Cu₃Sn and $Cu_{e}Sn_{f}$ during storage in air)


20 sec

80 sec

The metallurgy – It's science not hypothesis

alpha


Optical images of the cross sectioned board with HASL

BGA's Co- Planarity – Device Supplier

Cookson Electronics

What next ? Alternate Finish ? OSP ?

Based on Alpha India's CTS team's recommendation Txxxx Electronics procured 40K **OSP finish PCBs.** Processed these PCBs with our support in the line.

Result:

Date	Production	BGA Failure_OSP	Rejection %
18.12.2010	14545	2	0.0137
19.12.2010	14499	2	0.0138

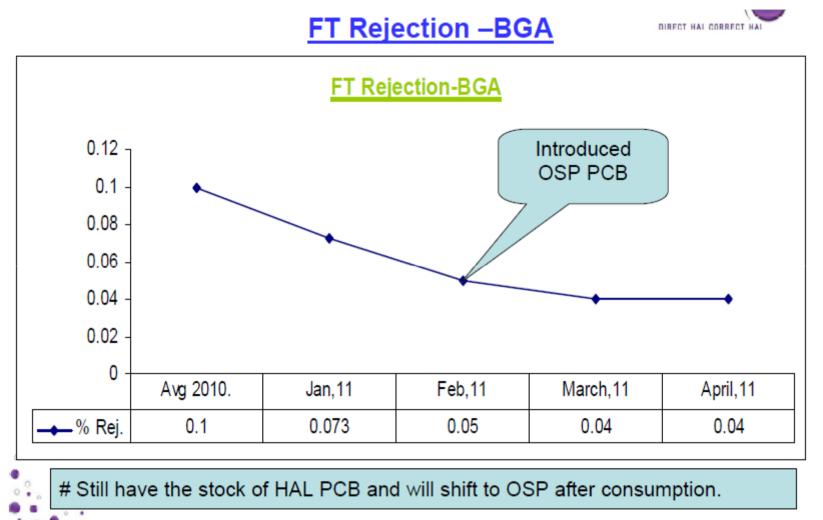
With HASL finish PCB the BGA failure was - 0.1 % (1000 PPM)

And now in OSP PCB reported is - 0.0137% (137 PPM).

Just the process failures excluding the field failures

Cookson Electronics

99.00 % Improvement in process


With this experiment , We zeroed the PCB Part Defect contribution in Intermittent BGA Failure

Result

• ° •

. ~

alpha

Still have the stock of HAL PCB and will shift to OSP after consumption.

Field Failures YTD April 2011

- Tuner = 0.8%
- Flash IC = 0.5%
- SMPS = 0.5%
- BGA = 0.03% ~
- Others = 0.9%

BGA is 300 ppm now as compared to 2.5% (25000 ppm) April 2010

ALLOY SYSTEM	COMPOSITION	MELTING RANGE (°C)
Sn-Ag	Sn-3.5Ag	221
	Sn-2Ag	221-226
Sn-Cu	Sn-0.7Cu	227
Sn-Ag-Bi	Sn-3.5Ag-3Bi	206-213
	Sn-7.5Bi-2Ag	207-212
Sn-Ag-Cu	Sn-3.8Ag-0.7Cu	~217
Eutectic	Sn-4Ag-0.5Cu	~217
	Sn-4.7Ag-1.7Cu	~217
SAC305	Sn-3.0Ag-0.5Cu	218-219?
SACX0307	Sn~0.9Cu~0.17Ag~0.14Bi	217-228
Sn-Ag-Cu-Sb	Sn-2Ag-0.8Cu-0.5Sb	216-222
Sn-Zn-Bi	Sn-7Zn-5Bi	170-190

EUTECTIC ALLOYS

Copper Dissolution - Test Results

- The results showed that the Tin Lead alloy dissolved the least amount of copper.
- The <u>best performance</u> for the Lead-Free alloys was the **SACX** material.
- The worst performance was from SAC305

Surface Finish	Cost	Corros ion Res	ICT	Hole Fill	Fine Pitch	Cosm etics	Comments
lmm Silver	Low	Poor	Good	Mod	Good	Poor	Good surface finish for soldering and testing, tarnish & creep corrosion are the weaknesses
HT OSP	Low	Mod	Poor	Poor	Good	Mod	Requires pasting of test pads/vias. Difficult to achieve LF hole fill, especially on >0.062 boards.
LF HASL	Mod	Good	Good	Good	Mod	Good	Phenolic laminate recommended. New equipment required. Flatness is better than SnPb HASL
lmm Tin	Mod	Good	Good	Mod	Good	Mod	Solderability/hole-fill may be a problem on double sided PCBs. Shelf life.
ENIG	High	Mod	Good	Good	Good	Good	Galvanic driven creep corrosion can occur if Cu is exposed. Ni-Sn interface is brittle with LF. Black pad issues remain.

Final Plating Finish Comparisons:

	HASL (SnPb)	HASL Lead- Free	Electroless Nickel Immersion GOld - ENIG	Immersion Silver-IAg	Organic Solderable Coatings - OSP	Immersion Tin - ISn	Electrolytic Nickel Gold - NiAu
RoHS Compliant	No	Yes	Yes	Yes	Yes	Yes	Yes
Fabrication Costs	Low	Low	Medium	Medium	Low	Medium	High
Shelf Life	1 Year	1 Year	1 Year	9-12 Months*	9-12 Months*	9-12 Months*	1 Year
Assembly Cycle Capacity	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple
Multiple Rework Capacity	Limited	Limited	Limited	Yes	No	No	No
Solder Wettability	Excellent	Good	Good	Very Good	Good	Good	Good
Co-planarity	Poor	Good	Excellent	Excellent	Excellent	Excellent	Good/Poor
Solder Joint Integrity	Excellent	Good	Good	Excellent	Good	Good	Poor**
Low Resistance/ High Speed	No	No	No	Yes	N/A	No	No
Aluminium Wire Bond	No	No	No	No	Yes	No	Yes

SURFACE FINISH	THROUGH- HOLES	PRESS-FIT	SMT	FINE-PITCH Bga	EMI Shields	CARD GUIDES	EDGE Connectors	FLIP Chips	GOLD WIRE BOND	ALUMINUM WIRE BOND
Selective Solder	ОК	ОК	OK	ОК	OK	OK	ОК	OK	No	No
ENIG	ОК	ОК	OK	No ¹	OK	OK	ОК	ОК	No	No
HASL	ОК	ОК	OK	No	OK	OK	ОК	No	No	No
Immersion Sn	ОК	ОК	OK	OK	OK	ОК	ОК	ОК	No	No
Immersion Ag	ОК	ОК	OK	ОК	No ³	OK	ОК	ОК	No	No
OSP	ОК	OK ²	OK	ОК	No	No	ОК	OK	No	ОК
Electrolytic Ni-Au	⁴ No ⁵	ОК	OK	ОК	OK	OK	ОК	ОК	ОК	ОК
Reflow Sn-Pb	ОК	ОК	No	No	ОК	No	ОК	No	No	No

¹Not Suitable for 1.0mm pitch or less.

² Not the best or more robust choice.

³ EMI Shielding OK, but tarnish formed when left unsoldered / exposed

⁴ Electrolytic Ni-Au will embrittle solder paste due to excess gold plated in PCB high current density areas.

⁵ Not for aspect ratios > 8:1 due to poor throwing power

ENIG or ENEPIG

- SnPb medical and aerospace
- Small specialty electronics (not Pb-free that is susceptible to shock).

OSP (but must address ICT issues)

- Hand held electronics
- Notebook computers
- Basic desktop computers
- Basic consumer electronics & power supplies
- Pb-free Medical or aerospace (thin PCBs)

ImAg

- Fully enclosed hand held electronics
- Basic consumer electronics

ImSn

- Simple consumer electronics (not fully enclosed)
- Simple medical or aerospace applications (1 side)
- Low to moderate volume peripheral components

LF HASL

- Thick LF PCBs going into business environments (servers, telecom equipment)
- Complex Pb-Free medical or aerospace?

Alternate Cost Effective Soldering Materials

Wave Solder Materials

Alloys

What are some key considerations for companies considering next generation Pb-Free alloys?

Same old story...

»Reliability
»Processing Parameters
»Soldering Performance
»Availability and Cost

(Assumes alloys have sufficient electrical conductivity)

Reliability

Density / Specific Gravity

Thermal Conductivity

Coefficient of Thermal Expansion

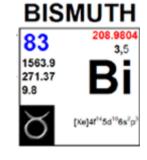
Tensile Strength (M-Pa)

Elongation %

Hardness

Creep Strength (*time to failure*)

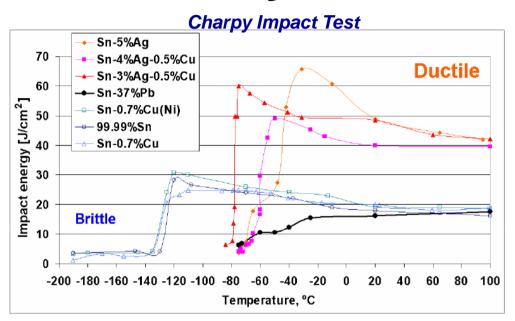
Stress Testing – joint strength


Stress Testing - thermal cycling

Tin Whiskers

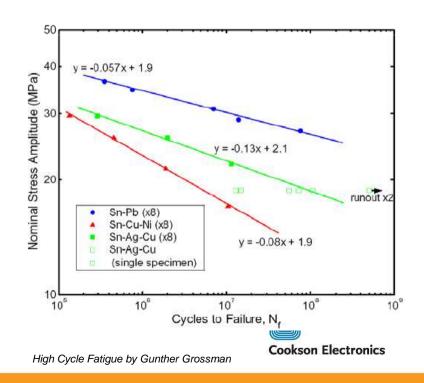
•Silver improves the fatigue resistance of Lead-Free alloys as it forms IMC Ag3Sn with the tin, these hard platelets increase the fatigue resistance.

•Small amounts of Bismuth (<3%) improves the fatigue resistance of Lead-Free solder alloys. This is due to the solid solubility of Bismuth in Tin that results in a hardening of the alloy.

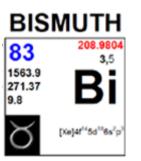


Key Considerations

alpha


Reliability data

The Ag3Sn platelets also make the alloy hard


	SAC 0307x	Leading Ag free alloy	SAC 305 alloy
Vickers	14.2	11.1	15.3
Hardness	14.1	12.1	15.1
measurements on multiple	14.0	10.5	14.8
samples	13.9	11.3	14.7
	14.1	11.7	15.5
			15.8
Mean	14.06	11.34	15.2
Std dev	0.11	0.61	0.42

Silver contributes to alloy strength while also helping to keep it ductile – improving it's ability to absorb and recover from mechanical stress

Processing Parameters

Silver and Bismuth lower the liquidus temperature.

Nickel lowers copper dissolution but increases the liquidus temperature

Impurities

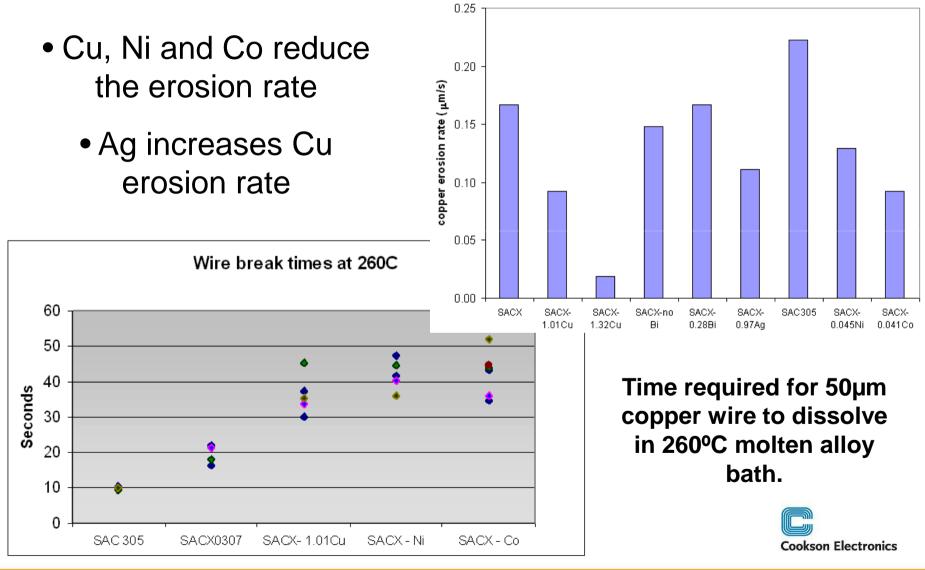
Alloy Stability

Liquidus / Solidus Temp

Specific Heat

Copper Erosion Rate

Drossing Rate


Pot Corrosion

Operating Temperature

Other additives reduce dross rates

Copper Dissolution Data

Soldering Performance

Wetting Speed

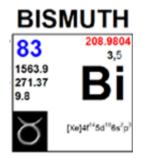
Wetting Force

Skips

Bridging

Solder Balls

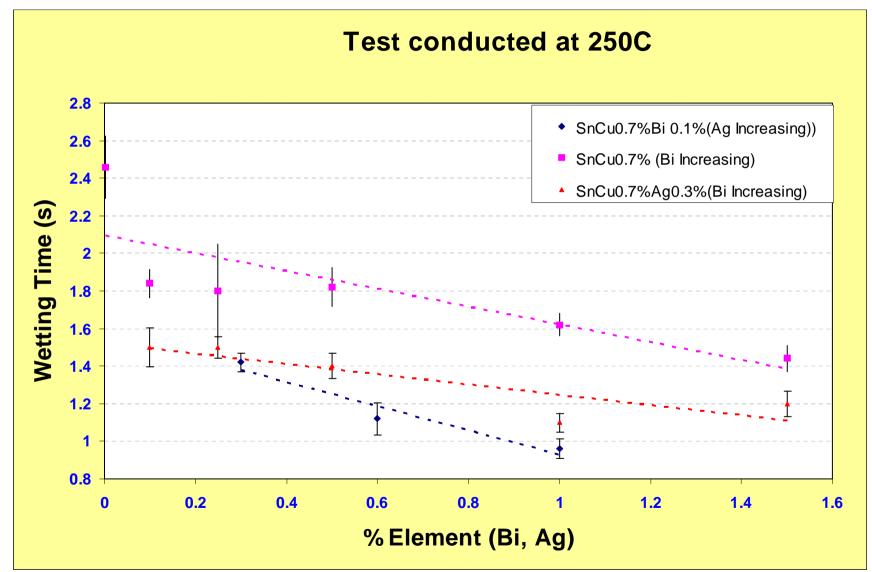
Hole Fill


Spread

Joint Finish

Silver improves wetting speed and force by lowering the surface tension of the SAC alloy. This also lowers defects like bridging and skips when soldering SMT components.

Bismuth improves the wetting speed and force thereby improving hole-fill and spread. Additions of Bismuth compensate for the reduction in Silver in lower Silver SAC alloys to maintain these strong wetting properties.



Nickel increases surface tension – lowering wetting speed and force.

Cookson Electronics

The effect of Bismuth and Silver

Alloy Availability and Cost

Alloy availability

Alloy cost

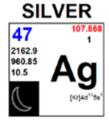
Sizes / Shapes

Markings

Packaging

Manufacturing proximity / capacity

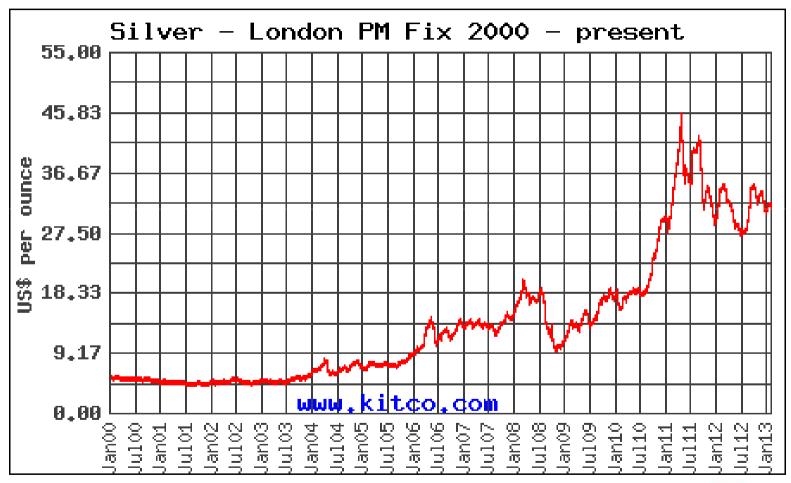
Recycling

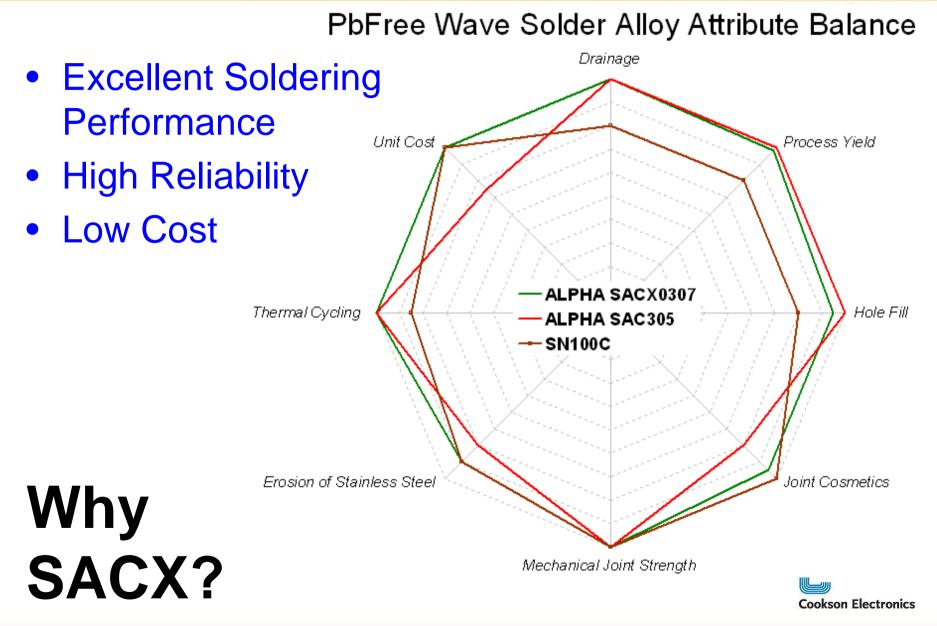

Regulatory

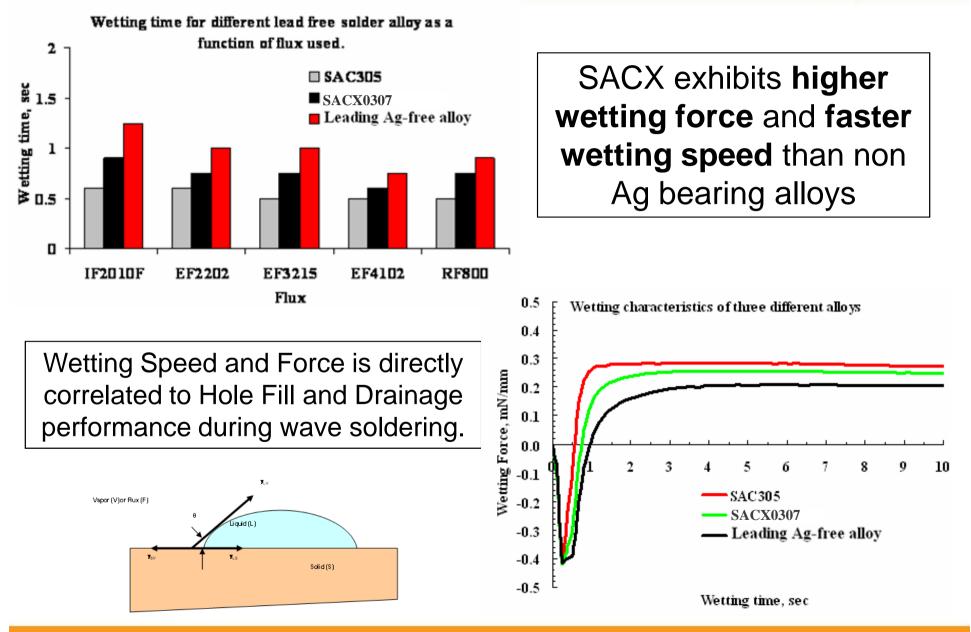
Intellectual Property

Is the alloy available everywhere you need it?

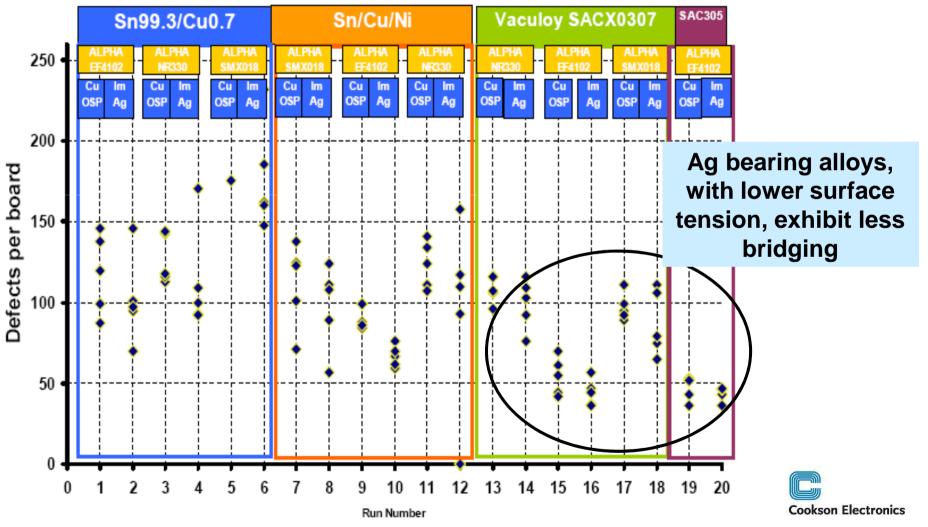
Silver content has big impact on alloy cost. A 1% decrease in silver results in a 10% decrease in cost.

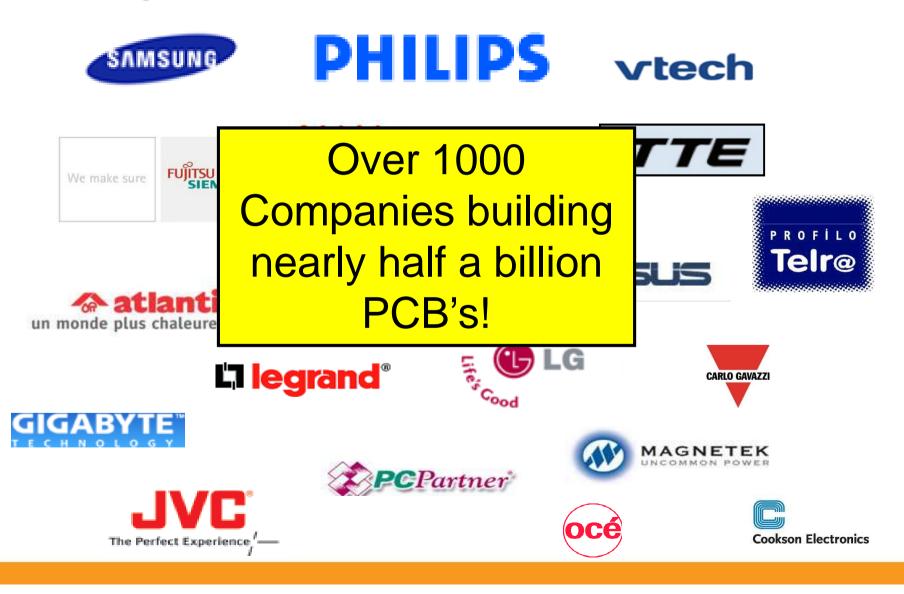



Are all the alloys constituents recyclable?



Trend of Silver (Ag) : 2000- 2013




Bridging Performance

Vaculoy SACX0307 Versus Sn/Cu based alloys

Companies that have transitioned to SACX

Test Results

SACX0307 Solder Fillet - no fatigue cracks or grain delineation

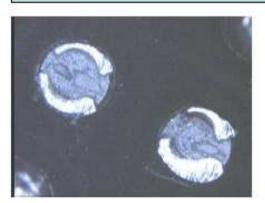
Figure B2. No fatigue cracks can be seen in the heel fillet of the joint at higher magnifications

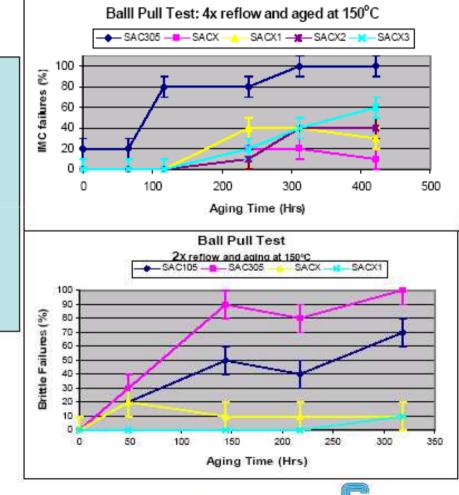
SACX exhibits equivalent or better reliability than all the leading Pb-free alloys

SACX after cycling – no cracks

Sampling of results from customer thermal cycling tests

Thermal Cycling


Test Type	Lower	Upper	Cycles	Results
Thermal Cycling	-40	125	2000	No difference between SACX and SAC305
Thermal Cycling	-40	85	1000	Lower failure rate that SAC305
Thermal Cycling	-40	90	500	0 failures
Thermal Shock	-40	80	300	Lower failures than Sn/Cu/Ni
Thermal Cycling	0	100	500	Passes requirements of PC manufacturer
Thermal Cycling	-40	125	1000	Equivalent to SAC305 better than Sn/Cu/Ni



IMC and Test results

Ball Pull Results

- SAC305 shows highest % IMC fracture
- SAC105 is slightly better than SAC305
- SACX shows the lowest % brittle failure
- SACX1 with enhanced oxidation resistance also shows good ductility

Cookson Proprietary and Confidential

Cookson Electronics

ectronics

PQFP208 Lead Pull Tests

Avr= High= Low=

Sample ID

_								SAU
le		SACX/240C	SAC X/250C	SAC/235C	SAC/240 C	SAC/250 C		
	594	508	480	215	352	213		of
	527	535	500	242	280	253		()
	538	565	492	221	201	342		•
	465	662	578	325	245	382		
	334	519	495	293	264	250		
	576	551	522	339	266	266		
	546	576	495	576	253	250		
	562	632	401	807	239	272		
	522	525	447	826	113	242	1206	Resistor F
	468	498	511	776	126	218		
	530	538	595	651	113	237		
	490	586	594	240	129	220		
	573	527	468	225	136	246		
	490		016 Lead I	Pull Tests				
	465	516						
	386	480			SAG	2305	SACX	(0307
_	500	538			Pull-Off		Pull-Off	
	616	501			Strength	Failure	Strength	Failure
	471	488			(kN)	Mode	(kN)	Mode
_	533	557	Secti	on 3	0.0133	6	0.0251	8
	509	543	Secu	011.5	0.0153	6	0.0265	8
	616	662			0.0142	6	0.0298	8
	334	480	Pack		0.0138	6	0.0281	4
			Parall	el To	0.0134	6	0.0285	4
			Wa	ve	0.0156	6	0.0217	6
			1000000		0.0158	6	0.0177	6
					0.0155	6	0.0169	6
					0.0150	6	0.0186	6
					0.0262	6	0.0104	6
					0.0269	6	0.0119	6
					0.0277	4	0.0230	8
					0.0250	6	0.0239	6
					0.0289	6	0.0240	8
					0.0123	6	0.0248	6
					0.0129	6	0.0214	6
					0.0116	6	0.0161	6
					0.0110	6	0.0178	6
					0.0135	6	0.208	6
					0.0170	6	0.0216	6
			Mean	(kN)		017	0.0	÷
			Std Dev (k)	viation		006	0.0	

SACX exhibits Higher Strength vs. SAC305 in a variety **SMT Pull Tests**

Pull Tests

m

		Allov	Туре	St	d. Devia (kN)	tion	
SAC	305	SACX		Sn63/	Sn63/Pb37		
Pull-off Strength (kN)	Failure Mode	Pull-off Strength (kN)	Failure Mode	Pull-off Strength (kN)	Failure Mode		
0.059	5	0.079	0	0.070	0		
0.075	5	0.071	(900	- 20		
0.054	0	0.061	C				
0.075	5	0.061	C	800			
0.054	0	0.070	C	700			
0.078	5	0.093	()	; 600 🖡		3	
		0.068	Force (500		3	
			<u>د</u>	400 [
0.0	66	0.07	72 1	300	334	4	
0.0	11	0.01	1.1.1.1.1.1.1.	200			
1660 전화		n Failure M	ode	100			
5 – L	ead fail	ure		_o E			

Connector Pull Tests

Mean (kN)

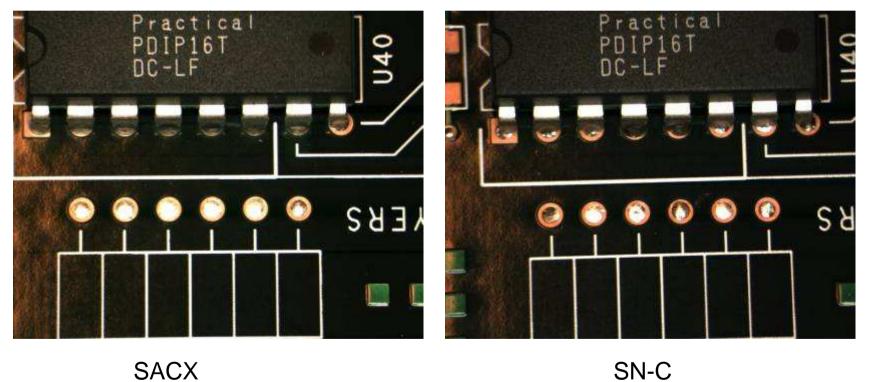
		Alloy	Туре		
SAC	305	SACX0307		Sn63/Pb37	
Pull-off Strength (kN)	Failure Mode	Pull-off Strength (kN)	Failure Mode	Pull-off Strength (kN)	Failure Mode
0.275	5	0.229	6	0.036	5
0.286	5	0.329	5	0.048	5
0.315	5	0.332	5	0.300	5
0.265	5	0.319	5	0.214	5
0.326	5	0.318	5	0.315	5
0.329	5	0.332	5	0.237	5
0.299		0.310		0.192	
0.0	27	0.04	40	0.122	

Code: 5 - Lead failure, 6 - Grip failure

826 662 -595-543 -496 - 480 495 -401-382 352 - 261 210 215 178 -102-EACTH235C EACTH240C EACTH250C EACT235C* EACT240C* EACT250C*

Overview of the SACX Family of Alloys

The SACX Family


Alloy	Description	Availability
ALPHA® SACX® DT	Designed to minimize copper erosion associated with the longer contact	
ALFHA® SACA® DT	times during selective soldering and rework operations.	Wire, ingots
ALPHA® SACX® HASL	Designed to produce a smooth, uniform pad finish while minimizing copper	
ALPHA® SACA® HASL	erosion during plating.	Bars
ALPHA® SACX® 0807	Soldering performance and reliability similar to SAC305. For use on complex,	Bars, wire, feeder
ALFHA® SACA® 0007	dual sides assemblies where high wetting force is needed.	ingots
ALPHA® SACX® 0307	Excellent soldering and reliability for either single sided or standard	Bars, wire, feeder
ALPHA® SACA® 0307	complexity dual sided assemblies.	ingots, spheres
ALPHA® SACX® 0107	Basic alloy for use on single sided assemblies where moderate reliability in	Bars, wire, feeder
ALFHA® SACA® 0107	required.	ingots

- Each alloy contains constituents to enhance specific areas of performance
- Alloys are fully cross compatible

Hole-Fill Comparison

SACX

Introduction

ALPHA SACX® 0807 is a newly designed and tested lead free electronics soldering alloy that uses the latest innovations to deliver best in class soldering performance and reliability. It's also easy to use and can be dropped in to most current SAC 305 wave soldering processes. ALPHA SACX® 0807 contains just the right amount of additives to be the perfect choice for the most challenging assemblies while also helping Assemblers lower their material costs.

Feature	Benefit
Stable Alloy Matrix	Constituents maintain homogenous mixture during use. Virtually no solder bath maintenance requiring alloy "re- balancing" common with less stable alloys
Low Operating Temperature Requirement	Drop in to most current lead free wave soldering machine temperature profiles
Low Dross Rate	Less time and expense realated to dross removal
Low Copper Erosion Rate	Less risk during high temp, high exposure time rework steps
Low Surface Tension Alloy	Fast wetting with high wetting force delivering excellent hole fill and low SMD related defects
Hard, Ductile Joints	Lower warrantly claims related to mechanical joint failures
Low Silver Content	Lower assembly material costs

High Performance Alloys for <u>Every</u> Assembly

	Assembly Type					
	Single Side boards	1.6mm up to 8 layer PTH boards ENIG/ImmAg/LF HASL	1.6mm up to 8 layer PTH Boards Cu OSP	>2.4mm >8 layer FR4 PTH		
Types	TV Chassis (CRT)	PC Motherboard	PC Motherboard	Server board		
Уp	Toys	Gamebox board	Gamebox board	Network Infrastructure		
μ.	Set top Box	PC Peripherals	PC Peripherals	Telecom Base Station		
ice	DVD player	TV LCD/Plasma	TV LCD/Plasma			
Device	White Goods	Automotive Engine Mgt	Automotive Engine Mgt			
Ω	Audio System					
	ALPHA® SACX®0107					
Assembly	ALPHA® SACX® 0307					
Assembly	ALPHA® SACX® 0807					
	ALPHA® SAC305, 387, 405					
Rework		ALPHA® \$	SACX®DI			
HASL		ALPHA® SACX®HASL	I]		

Evaluation of Paste CVP390-SACX0807 in A Major EMS in Western region

20 July 2011.

Rajeshwar Andurekar CTS Engineer – West India

Presently xxxxx a major EMS player in India is using Alpha OM-345 SAC305 RoHS (96.5% Sn, 3.0% Ag, 0.5% Cu) Composition for their OEM customers from Automotive, Industrial, Telecom & Consumer Electronics Industry segments

The average consumption per month is 850 kg solder paste / month

Continuous pressure from their OEMs to reduce BOM cost was mounting

A meeting was organized for all vendors to review pricing

Cookson (Alpha) proposed the availability of alternate low silver containing solders like SACX0807, SACX037 & SACX0107 alloys in Solder Paste, Solder Bar & wire.

So Cookson & the EMS company decided to promote Alpha CVP390-SACX0807 by conducting evaluation and measure the impact on quality

SACX0807 Solder Paste Trials

- Trials were conducted for small & large batch sizes ranging from 10k to 50K PCBs
- Boards were sent for reliability testing and the data was compared Vs SAC 305 older paste alloy
- A comprehensive report on reliability of solder joints was prepared and reviewed
- The results exceeded their expectation

1

Category	OM345	CVP390	Savings	Units
Cost of solder paste per Kg	4400	3390	1010	Rs/kg
Consumption of paste per month	830	830		
Total cost of per month	3,652,000	2,813,700	838,300	Rs /Month
Total cost of per year	43,824,000	33,764,400	10,059,600	Rs /year
US\$ - 223			1 crore 60 thousand F	

Cookson Electronics

Proposal for XXX on Savings on RoHS Solder

- Average consumption of SAC305 (SFO Cochin) = 700 800 kg
- Current selling Price of SAC305 solder = Rs.3471
- Current selling price of SACX0307 solder (SFO Bangalore) = Rs.1757
- The difference = Rs.1714
- Your Savings per month = 1714 X 750 kg = 12.85 Lacs
- Savings per Annum = 12.85 X 12 = Rs.1.54 Crore

- The actual and projected data in terms of substrate area processed clearly shows a significant bias towards OSP. That does not mean that OSP should be used as a universal finish. Far from the truth.
- What this does mean is that there are a significant number of PCBs assembled today with OSP as its final finish of choice. This includes networking, computer mother boards, automotive electronics including engine control and disk brake systems, mobile phones and other handheld devices. So, contrary to sentiment in some circles, OSPs are not just for low-end consumer electronics. But, again, there are no free lunches. As with any surface finish, there will always be limitations.

So it is appropriate to clearly frame up what the PCB fabricator must do to insure a high-quality and solderable PCB for lead-free assembly when using OSP

The surface finish you select will have a large influence on quality, reliability and cost.

It is a complex decision that impacts many areas of the business.

Select a finish that optimal for the business (and not just one function).

Know that there are engineering tricks to improve on weak areas of each finish.

Stay current in this field because new developments continue to be made.

Acknowledgements / Credits

alpha

- Cisco Systems, Inc.
 - Multek
 - SMT Magazine
- "A Study of Lead-Free Hot Air Leveling", David Suraski, Circuits Assembly OCT 2004
 - "Effects of Surface Finish on High Frequency Signal Loss using Various Substrate
 - Materials", Don Cullen, Bruce Kline, Gary Moderhock, Larry Gatewood (*1)
 - Atotech
 - Florida CirTech, Inc.
 - Nihon Superior Co., LTD (Osaka, Japan) SN100CL
 - Iowa State University
 - Senju/Matsushita
 - Metal Finishing Industry
 - NEMI
- CREEP CORROSION ON LEAD-FREE PRINTED CIRCUIT BOARDS IN HIGH SULFUR ENVIRONMENTS
 - Randy Schueller, Ph.D.; Dell Inc., Austin, Texas, randy_schueller@dell.com

Randy Schueller, Ph.D., DfR Solutions

- CEMCO FSL "The Newest Surface Finish Alternative
- LEAD-FREE HASL. It's Development and Advantages"
- Circuit Connection Presentation (Florida CirTech, Inc. Dec-05-05)
 - Chris Padilla (Cisco Systems, Inc.)

Freeman 1995

Special Thanks to the following individuals that have contributed to the slides and animation in this presentation:

Dan Slocum, Craig Davidson, Brad Hammack, Mike Barbetta, Kim Hyland, Glenn Sikorcin

