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ABSTRACT Electronics industry is one of the fastest evolving, innovative, and most competitive industries.
In order to meet the high consumption demands on electronics components, quality standards of the products
must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in
quality inspection of various products. This technique is considered robust and can replace human inspectors
who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection
system consists of hardware and software setups. Hardware setup include image sensor and illumination
settings and is responsible to acquire the digital image, while the software part implements an inspection
algorithm to extract the features of the acquired images and classify them into defected and non-defected
based on the user requirements. A sorting mechanism can be used to separate the defective products from
the good ones. This article provides a comprehensive review of the various AOI systems used in electronics,
micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected
electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light
emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms
of the camera and lighting source selection and configuration. The inspection algorithms used for detecting
the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and
classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed.
The article concludes by highlighting the current trends and possible future research directions.

INDEX TERMS Automatic optical inspection, classification algorithms, electronics industry, feature
extraction, image processing, image sensor, machine learning, machine vision.

I. INTRODUCTION
Defective products increase costs and deteriorates manu-
facturing processes [1]. Timely and accurate detection of
defects helps industries to apply quality control and stabi-
lization strategies to maintain competitive edge over com-
petition [2]. Several quality monitoring approaches such as
ultrasonic inspection, Eddy current, dye penetrant testing,
thermography, circuit probe, X-ray and optical inspection are
currently being used to assess products’ quality in order to
achieve 100% qualified products. Most of these approaches
are considered non-destructive, where each one of them has
its own advantages and disadvantages as shown in table 1.
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approving it for publication was Mehul S. Raval .

Among these techniques, optical inspection approach for
defect detection is one of the most common procedures used
in industry [3]. Optical inspection techniques can be subdi-
vided into manual optical inspection (performed by a human
inspector) and automatic optical inspection (AOI) which is
performed by using an image sensor and processor.

The rapid development and effective fusion of image cap-
turing and processing technologies in recent years has caused
tectonic shifts in the success of AOI techniques over manual
optical inspection for quality monitoring and non-destructive
testing in various industries [3]. The automation of qual-
ity monitoring and control process will lead to major pro-
ductivity gains in the future. Noteworthy, manual optical
inspection increases inspection time and reduces accuracy.
Authors in [12], [13] have also showed that human vision
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TABLE 1. Summary of quality monitoring approaches used in industrial inspection.
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inspection capabilities declines with dull and endlessly rou-
tine jobs (i.e. fatigue). On the other hand, modern captur-
ing devices are capable of detecting tiny defective features
and features with low intensity and contrast that even the
most experienced inspectors cannot detect them using their
naked eye. Recent studies have also revealed that humans
cannot handle identifying color defects as color is psycho-
logical perception even though it is triggered by physical
radiation [14], [15]. Automated machine vision data cap-
ture system have paved a way for large scale observations
helping to gather statistically viable information for quality
analysis and assurance methods [16], [17]. Chen and Harlow
in [13] gave six productivity and efficiency reasons for using
AOI instead of manual inspection. Freeing humans from
the dull and routine, saving human labour costs, performing
inspection in unfavorable environment, reducing demand for
highly skilled human inspectors, analyzing statistics on test
information and keeping records for management and deci-
sions, and matching high speed production with high speed
inspection. To add to these, one can include the expansion in
scale, scope, application, and techniques that provide depth,
breadth and multiple perspectives.

Recently, AOI algorithms were further enhanced by inte-
grating them with machine learning techniques and deep
learning, which at occasions could improve the result
and speed of the detection process remarkably [18], [19].
Timm and Barth in [20] suggested that an AOI algorithm
must satisfy two major requirements; 100% detection rate
and minimum false alarm rate. Convolutional Neural Net-
works (CNN) was one of the common used deep learning
algorithms recently for inspection purposes [21]. The reason
behind this is because CNNs are specialized in dealing with
image data. Furthermore, it does not need feature extraction
or preprocessing for the images. Hence, preprocessing and
feature extraction processes are embedded within the hidden
layers of the CNN.

AOI technologies are currently used in many fields for
inspection such as food [22], textile [23], construction [21],
metals [24], and medical applications [25]. The aim for this
study is to review and critique research articles that conducted
AOI systems and algorithms for detecting defects in electron-
ics industry during the last two decades. It is worth mention-
ing that this review paper is intended to highlight the current
AOI trends in electronic industry, and may help researches
to have a helicopter view of the recent developments in
this area. The research questions studied in this review
are summarized in Table 2. In this review paper, we will
begin by highlighting the applications for AOI systems in
electronics industry (section II). The defects investigated
using AOI in the electronics industry are then mentioned
and explained (section III). Section IV will discuss about
the hardware setup of AOI system. Section V will explain
the inspection algorithms used. Section VI will discuss
about the sorting mechanism used in industrial inspection
system. Finally, section VII will discuss about possible lim-
itations and future directions of AOI systems. Mindmap in

TABLE 2. Research questions.

Figure 1 shows an overview for the structure of the
review.

II. AOI APPLICATIONS IN ELECTRONICS INDUSTRY
Electronics is one of the fastest evolving, most innovative,
and most competitive industries [26]. The past five years,
have been characterized by growth in emerging markets
and introduction of new products, leading more people to
buy consumer electronics. The global consumer electronics
industry was valued at $1 trillion in 2020 [27]. Production
of electronics involves many manufacturing processes from
automated assembly lines to testing and final manual assem-
bly [28]. The electronics product sizes are getting larger for
home display devices such as the LCD TV sets. Or, the prod-
uct sizes are dramatically reduced for handheld or wearable
devices such as smart phones and smart watches, as a result
the need for an AOI system to the various sizes of electronics
products were not an exception from any other industry [29].
In fact, the challenges facing the electronics industry is much
severe compared to others, as the electronics products and
manufacturing plans evolve rapidly and the electronics prod-
ucts tend to have short life cycles [30]. These challenges
require to change the process parameters accordingly. All
of these changes (whether they are sudden or long-term)
cause defective products, and therefore quality assurance and
process improvement is very essential in electronics industry.
According to Xie et al in [31], in electronic manufacturing
industry, a defect is a condition that may be insufficient to
ensure the form, fit or function of the end product.

The keywords used in the searching process for the
reviewed articles are explained in Appendix. The results
for the conducted search are found in the map of
Figure 2. We found that AOI in electronics industry was
widely used in four major applications: light emitting
diodes (LED) inspection, semiconductor wafer inspection,
printed circuit board (PCB) inspection and flat panel dis-
play (FPD) inspection (e.g. LCD and OLED). We also found
that some literature considered AOI for some miscellaneous
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FIGURE 1. A mindmap that shows the structure of the review article.

applications such as detecting defects in camera modules,
fuses, and passive electronic components. Figure 2 shows
that 93 of the reviewed articles used AOI techniques for semi-
conductor wafer defects detection, 83 for FPDs, 75 for PCBs,
19 for LEDs and 12 for miscellaneous electronic component
defects. We also observed that the highest concentration for
the research articles reviewed in this paper are conducted
in Taiwan with a percentage of 41.84%, followed by china
mainland with 22.7%, then South Korea with 12.8%. This
comeswith no surprise as according to the report in [32], most
of the world’s supply of electronic components and products
are produced in Asia. Furthermore, Asia is now the major end
market for many of these goods too. In 2018, for example,
40% of all personal computers sold worldwide, were sold in
China alone. According to the same report, electronic exports
in Taiwan alone accounts 45% of the country’s total exports,
while China and South Korea account 35% each. The average
for Asia total electronics exports is 30%.

III. DEFECT FEATURES
In this section we report and appraise the historical evolution
of the process of transition and translation of visible defect
features detected by sensors, into data for automatic feature
extraction, classification and evaluation of components by
vision systems.

A. LED DEFECTS
Due to their proliferation and importance, LED have been the
focus for many researchers and industrialists [33], [34]. LEDs
are used in various applications that include mobile phones,
lighting equipment, vehicle accessories and panels of various
sizes [35]. According to the application there are various
types of LEDs such as dual-in-line package (DIP) LED,
surface-mounted device (SMD) LEDs and High Power (HP)
LEDs (also called chip-on-board COB LEDs) as shown
in Figure 3. To meet consumer and industry needs, LED
products are being made in smaller sizes, which increases
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FIGURE 2. A map that shows the litreture found for reviweing according to the country and the defect type considered.

FIGURE 3. Different LED types.

the difficulties of product inspection [38]. Mainly there are
two types of inspection, electrical and optical inspection.

The electrical inspection ensures correct functionality, but
since an extensive stress test cannot be applied for all
LEDs, defects that might cause malfunction after a period
of time cannot be detected accurately [20]. Therefore, many
researchers have conducted studies to detect different defects
of LED types using AOI techniques. Ahmed Fadzil andWeng
in [39] were one of the earliest researchers to consider LED
defects using AOI. Their study inspected cosmetic flaws
on the epoxy dome of DIP LEDs such as contamination,
scratches, blister/blemish and fuzzy defects as these kind
of defects impair the appearance of LED chips as well as
their functionality and security [36]. They showed that each
type of defect has special features in order to be detected
efficiently by the image sensor. For example, contamination
defects (which are caused by contaminated mould cups or
dust) appears to be flat black region on or inside the epoxy
and is easily discerned from the uniform background. On the
other hand, bubble defects (which are results of improper
curing process control) appears as small black circle and may
look like a small ring if the bubble is big enough to reflect
the light from the bubble region. Other type of defect such as
blister/blemish and fuzzy (which are caused by different man-
ufacturing process deviations) appears as group of scratches.
Lin and Chiu in [38], [40] considered similar kinds of these
external defects. Yang et al. in [41] considered different
types of external defects (aperture defects) in LED bulbs,
which affects rivet installation process as shown in Figure 4.
Defected apertures can be recognized by their circular area
and contour lines appearance. Therefore, an optical inspec-
tion algorithm was used in this study to extract the maximum
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FIGURE 4. LED cup aperture defects studied in [41].

inscribed circles of the apertures and calculate the diameters
for evaluation.

Perng et al. in [37] considered investigating Type 1 and
Type 2 SMD LEDs shown in Figure 3(b). An orientation
region was labelled in both types to distinguish their polar-
ities. In Type 2 LED, there are three gold wires and a chip in
the phosphor region. The quality of the phosphor region influ-
ences the LED illuminating efficiency. Defects of lighting
phosphor region can be inspected visually in Type 2; however,
the lighting phosphor region of Type 1 cannot be seen due to
its physical placement when it is packaged. Therefore, in this
study, only external defects are considered in Type 1 LED.
Generally speaking, the defects in both types take place
during fabrication and taping processes. Examples of these
defects are mouse bites, missing gold wires, surface flaws,
missing component, wrong orientation and inverse polarity.
These defects can be identified visually by converting the
acquired image of a sample LED into a binary image and
examine the number of pixels of the segmented areas that
represent the regions of interest. Perng et al. in [33] consid-
ered the same types in their study. However, they subdivided
Type 1 LED into 2 sub-types, namely, small polarity and big
polarity for better defect classification A similar approach
proposed by Kuo et al. in [42] to detect missing component,
no chip, wire shift and foreignmaterial defects in SMDLEDs.

Some researchers considered evaluating the light intensity
and other physical properties of LEDs using AOI system.
Bürmen et al. in [43] analysed the optical properties of LEDs
by projecting the LED light on screen and analyzing the
image of the resulted projection. The optical properties stud-
ied in this paper were intensity, mean color, color variation,
viewing angle and divergence of the optical axis. In order
for them to conduct the study, they connected in series two
LEDs; one of them were a reference LED (non-defected) and
the other were the LED for testing purposes, to pass the same
electrical current for both. The reflected light for both LEDs
from a screen were captured by image sensors for further
analysis. The optical properties of the reference LED were

FIGURE 5. Image acquiring technique considered in [43].

compared to the one for testing. One drawback in this method
that through the testing process the properties of the reference
LED may change by time, and therefore the testing may not
be reliable.

Other researchers considered internal LED defects
that take place in the LED die regions, where such
defects are considered hard to detect and need special
arrangement such as scanning electron microscope (SEM).
Chang et al. in [44] proposed an AOI system to detect
defective dies in a four-element wafer, such that each wafer
consists of more than 8000 dies and the physical area of each
die is about 200 µm × 200 µm. The die first were divided
into three regions: light-emitting area, p-electrode, and back-
ground. The inspection of the die regions was performed
geometrically and heuristically. In geometric inspection the
die size, width, height, the electrode radius, and the center
of the electrode are evaluated according to pixel intensities.
In heuristic inspection, abnormal regions in the image are
evaluated such as empty pixels in light-emitting region.
Timm and Barth in [20] followed the same path in investigat-
ing die defects in HP LEDs. They have focused their attention
to the p-electrode of the die and its surrounding area, where
discontinuity and erosion defects could occur (as shown
in Figure 3(c)). Erosion and discontinuity defects cause the
p-electrode gets directly connected to the light emitting area
and thus can lead to critical malfunction of the LED. Since
p-electrodes are circular regions, radially encoded features
were examined to look for pixels intensities that could indi-
cate a presence of a discontinuity defect. Besides the com-
plexity of the defects, low contrast and strong image noise of
these defects make this problem very challenging. Lin in [36]
investigated water-drop defects that cause surface blemishes
which fall across two different background textures in DIP
LED chip (shown in Figure 6). This defect occurs due to the
steam generated during the production process. As the case
in epoxy packaging defects, these kinds of defects impair the
appearance of LEDs as well as their functionality and secu-
rity. The detection process of water-drop defect is not straight
forward as the blemish has a semi-opaque appearance and
a low intensity contrast with the rough exterior of the LED
chip. Moreover, the blemish may fall across two different
background textures, which further increases the difficulties
of defect detection. Therefore, the images acquired images
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FIGURE 6. Water-drop defects considered in [36].

for these defects were converted to the frequency domain for
extracting the defect features as discussed in section V-B1.
Kuo et al. in [45] considered multiple LED chip defects such
as fragment chips, scratch marks and remained gold on the
pad area, scratch marks on the luminous zone and missing
luminous zone. These defects were analysed geometrically
by evaluating area and perimetric measures of the segmented
areas of interest acquired from images. Kuo et al. in [46]
investigated LED chip defects in two areas of the chip; elec-
trode area and light area, which directly affect the luminous
efficiency (shown in Figure 7(a)). The investigated defects
in electrode area in this study are contamination, non-probe
and scrape as shown in Figure 7(b). While light area defects
include breakdown and color aberration defects as shown
in Figure 7(c).

FIGURE 7. LED chip defects considered in [45].

In similar study, Lin et al. in [47] investigated line blem-
ishes and scratch marks of two different types of LED chips,
namely, C1 and C2 as shown in Figure 8. Zhong et al. in [48]
investigated polycrystalline and fragmentary defects in LED
chips. Polycrystalline defects are referred to the LED chips
that contain a part of another chip and is therefore bigger than
a normal one. It is referred also to the chips that has a tiny
distance difference between them. Fragmentary defects are
referred to the chips that lack a part and are smaller than nor-
mal chips. Polycrystalline and fragmentary chips are mainly
caused by improper cutting. The acquired images of these
defects were segmented into blobs that represent the regions
of interest. The pixels intensities and geometrical features
are analysed based on the pose of the minimum enclosing
rectangle of each blob to extract the defected features.

FIGURE 8. LED chip defects considered in [47].

Table 3 summarizes the LED defects studied in literature
according to the part being investigated.

B. SEMICONDUCTOR WAFER DEFECTS
Advances in semiconductor technology and design have been
the driving forces behind the successful progress of electron-
ics industry [53]. The majority of integrated circuits (ICs)
that are used in microelectronic and optoelectronic devices
are manufactured using semiconductor wafers on their
surface [54]. Semiconductor wafers consist of repeated dies
which have the same structure and results in large numbers
of ICs and devices. Therefore, the process of fabrication
is a complex, long and costly which involves hundreds of
chemical steps that must take place in a clean room envi-
ronment such as oxidation, photolithography, etching, ion
implementation, and metallization and requires monitoring
a large number of key process parameters [55], [56]. After
the fabrication process, wafer testing on each fabricated die
is performed using test equipment called ‘‘wafer probe’’ (also
‘‘ circuit probe’’) to verify whether all dies meet the product
specifications and ensure that only good dies are sent to the
next manufacturing process [55]. To visualize the defective
dies in a wafer, a Wafer Map (WM) is created. WM allows
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TABLE 3. Summary of articles that used AOI system to investigate LED
defects.

to compare neighbor dies with each other and locate how
many dies are defected visually using a map image [57].
Wafer maps are also called Wafer Bin Map (WBM) when the
dies are represented in binary form such as the defective dies
has logic ‘1’ and the non-defected has logic ‘0’. Normally
three types of wafer defects occur, which are random defects,
systematic defects and mixed defects. Random defects
(Figure 9(h)) result from randommanufacturing environmen-
tal factors, such as particles in the clean room; these can
become randomly scattered all over the wafer. Such defects
are long-term and expensive to correct. On the other hand,
systematic defects are normally generated by an assignable
cause such as a human mistake, particles from equipment,
or chemical staining [58]–[60]. Systematic defects usually

follow a specific pattern, for instance, a center pattern (also
known as bull’s eye) concentrated in the center of a wafer typ-
ically occurs when there are uniformity variations caused by
a chemical mechanical process (CMP), the distance between
the wafer center and the center of the region is less than
four dies (shown in Figure 9(a)). A ring pattern (shown
in Figure 9(b)) appears along the wafer edge when there is
a layer-to-layer misalignment in the storage-node process,
which results in a write recovery time failure that is due to
the decreased size of the contact holes, most of the failed
dies occur along the wafer edge and encompass more than
four-fifths of the wafer perimeter. A scratch pattern as shown
in Figure 9(d) (also known as line pattern) is caused by
agglomerated particles and the hardening of the pad during
the CMP, where most of the failed dies on the wafer form a
line, and the length of the line is five or more dies. A shot
pattern (shown in Figure 9(e)) is caused by a probe-card
problem when multiple dies are simultaneously tested to
reduce the test cost. A zone pattern (also known as blob,
spot, or cluster) at a specific location on the wafer is caused
by non-uniformity or uneven cleaning, where most of the
failed dies on the wafer occur as an arbitrary shape, and the
distance between the wafer center and the center of the region
is more than four dies as shown in Figure 9(g). A checker-
board pattern as shown in Figure 9(f) is generated because
of the mask misalignment during the lithographic process.
Mixed defect consists of a random defect and a systematic
defect in one map. Most WMs are of this type. Hence,
it is important to separate random and systematic defects in

FIGURE 9. Different WM patterns (red squares indicate defective dies).
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the WBM since the systematic defect’s signature can reveal
the process problem. Therefore, it is important to detect and
classify these defects, in order to identify the root causes of
failure and to take appropriate actions for quality and yield
enhancement [55], [58], [59], [61]. Although after generating
theWM, the defective dies can be detected by an experienced
human inspector; however, as this process can be costly and
time consuming, many researchers evaluated the dies’ quality
using AOI techniques [62]. Most of the AOI techniques used
in semiconductor wafers can be considered semi-optical for
the purposes of this review since most of them does not
require establishing an image acquisition system (e.g. camera
and illumination setup). Hence, theWM image is constructed
from the circuit probe scanning. However, some articles still
considered conducting an image acquisition system (usually
with the aid of SEM) for the inspection purposes of semicon-
ductor wafers. In order to distinguish between both methods
used, research articles that used circuit probe to produce the
WM are labelled as ‘‘semi-optical’’ in Table 4. On the other
hand, research articles that used optical inspection setup are
labelled as ‘‘optical’’ in Table 5.

C. PCB DEFECTS
In recent years, demands for the placement of electronic com-
ponents on PCBs at a higher density have increased [136].
These components are assembled through electronic assem-
bly lines which are applied in the manufacturing of all
electronic products such as TV, digital cameras, etc. Themain
steps in themanufacturing of PCB are the following: applying
solder paste to PCB, placing IC on the board at correct posi-
tions and placing the board in an oven to solder components
to pads. [137]. During the manufacturing of PCBs, various
defects may occur at each stage, most of them occur at sol-
dering and component placement stages as shown in the pie
chart of Figure 11. For example, at the IC placing stage, defect
cases of missing, wrong or doubled components may occur.
In terms of possible soldering defects, most of them happen
after the reflowing stage, such as the defects at the IC package
components (pseudo joint, excess solder, insufficient solder,
shifting Solder and bridge defects) and the defects at the
non-IC components (side termination, tombstoned compo-
nents, raised components, pseudo joint, excess solder, insuf-
ficient solder, shifting, solder bridge) [138]. These defects
can severely affect the functionality of the PCB. For instance,
a missing solder joint or insufficient solder joint can cause
an open circuit of the PCB and thus the overall functionality
of the circuit will be affected. Excess solder joint can cause
bridging with other PCB solder joints which can lead to a
short circuit. Pseudo solder (also known as cold solder) is
considered a complex defect for detection [139]; this defect
occurs when the solder joint terminals are seemed to be
connected with the electronic component; however, there is
no physical connection occurring which may lead to open
circuit contact. A pseudo joint is formed when insufficient
heat is applied to completely melt the solder [140]. Figure 10
shows commonly investigated defects in PCB industry.

TABLE 4. Summary of articles that used semi-optical system (circuit
probe) to produce WM for inspection.

Electric tests and manual vision inspection test are still
used; however, introducing surface mount technology (SMT)
to the PCB assembly process made the PCB circuits much
finer and more complex, which make the previously men-
tioned defects more likely to occur and highlight the neces-
sity of an AOI system [142]. In fact, it was proven that
around 80% of the optically recognizable defects could not
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TABLE 5. Summary of articles that used image acquisition optical system
to inspect semiconductor wafers.

FIGURE 10. Commonly investigated PCB defects.

FIGURE 11. The frequency of PCB-related defects [141].

be recognized electrically [143]. Therefore, many researchers
have investigated different types of PCB defects using AOI
techniques. Hence, AOI for PCB boards was one of the

oldest subjects among other aspects in electronics industry.
Chin et al. in [144] can be considered one of the earli-
est researchers to use AOI in PCBs. Most of the research
articles that investigated PCB defects using AOI considered
solder joint defects and IC component placement using SMT
as shown in Table 6. Few studies considered IC marking
inspection. In IC marking inspection, incorrect direction or
marking will lead to incorrect placement of an IC on a
PCB [145]. The inspection has to identify print errors such
as illegible characters, missing characters and upside down
printing which frequently occur due to the malfunction of
the machinery [146], [147]. A typical industrial version of an
inspection system has to check about 7,300 – 7,500 IC chips
per hour, which justify the need for an AOI system to handle
the inspection task [146].

Where most of the researcher focused on inspecting SMT
solder joints, Fonseka et al in [148] inspected through
hole technology (THT) solder joints. In contrast to SMT,
the bulkier packages of THT components have a higher
positioning tolerance and are soldered from the other side
of the PCB. Solder joints of THT connections have highly
reflective metallic surfaces and thus are a very challenging
object for typical light based profilometric measurement sys-
tems [149]. Fonseka et al. conducted 4 studies to investigate
THT solder joint defects. Three of these studies [150]–[152]
were focusing on extracting the features and creating color
models for pad and solder joint detection. While the fourth
study [148] was a continuation approach that focused on
automatic solder quality classification for solder bridging,
voids in drill-hole region, voids on pad region, and excess
solder on solder joint. According to them, THT solder joint
inspection must be carried out within 6 seconds to meet
the manufacturing requirements. However, their inspection
system needs 8 seconds, which may affect its ability to be
implemented in inline inspection task.

Golden fingers of PCBs were also one of the visually
inspected components in literature; golden fingers are con-
necting terminals found on the edge of PCBs to enable
connections between multiple boards. They can be made
from gold combined with nickel or copper materials. Like
all other parts of PCBs, gold fingers are prone to many
kinds of defects. Jiang et al. in [153] considered 4 types
of golden fingers defects: scuffing, blotting tin, exposed
nickel, and un-plating defects. Jiang et al in [154] considered
bulged, coarse, and wet-tinned golden fingers for inspection.
Tsai et al. in [155] considered defects such as pinholes,
copper exposure, and nicks and roughness on gold-plated
surfaces. Similarly, many articles found in literature consid-
ered PCB traces’ defects. Traces refer to the copper wiring
in PCB that is responsible for passing the electric current.
Ibrahim and Al-Attas in [156] was one of the studies which
considered these types of defects. In their investigation, they
have divided the defects that occur in this area into two
categories namely functional and optical defects. Functional
defects seriously cause damage to the PCB, meaning that the
PCB does not function as needed. Visual defects do not affect
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TABLE 6. Summary of articles that used AOI system to investigate PCB
defects.

the functionality of the PCB in short term. But in long period,
the PCB will not perform well since the improper shape of
the PCB traces could contribute to potential defects. Fourteen
types of functional and visual defects were considered in
this study: breakout, short-contact, pin hole, wrong size hole,
open circuit, conductor too close, under-etch, spurious cop-
per, mouse-bite, excessive short, missing conductor, missing
hole, spur and over-etch.

Similar to PCB, Ball Grid Arrays (BGA) is a kind of a
SMT package which is used in electronic products to mount
electronic components such as ICs and microprocessors. The
pins used for connection are called solder balls which are
arranged in grid-like pattern. BGA packages are normally
placed on a similar grid pattern of copper pads on the required
PCB. Unlike conventional mounting method, the BGA takes
advantage of the bottom surface, instead of the perimeter of
the IC for connection. Hence, BGA provides an opportunity
to increase the number of pins, shorten the average lead
lengths, and improve the high-speed performance. However,

as the size of the solder balls becomes smaller and the
pitch between solder balls shortens, there is a higher demand
on the optical measurement system of component place-
ment machines [157]. Therefore, many researchers consid-
ered inspecting the resulting defects that can occur during the
BGA fabrication and placement process. Table 6 summarizes
research articles that used AOI system for defect detection
according to the PCB part and defect type.

D. FPD DEFECTS
Since the existence of the father of all displays, the cathode
ray tube, electronics displays became an important aspect
of human’s modern life [210]. Currently, Liquid Crystal
Display (LCDs) are the dominant technologies in the field
of electronics visual displays due to the variety of their
applications ranging from smartphones, tablets, computer
monitors, televisions (TVs), to data projectors. LCDs as
the name states are made from liquid crystals, which are
considered non-emissive materials and therefore does not
emit light. Therefore, a backlight is usually needed to light
the LCD display panels. Owing to the advances in mate-
rial research, thin-film transistor (TFT) LCD technology has
gradually matured in all aspects; some key hurdles, such as
the viewing angle, response time and color gamut, have been
overcome [211]. Thus, manufacturers have been devoting
considerable efforts toward increasing production of TFT-
LCD. In general, TFT-LCD manufacturing process can be
divided into three stages: TFT array process, cell process
and module process [212]–[214]. TFT array process alone
consists of five successive operation: gate electrode (GE),
semiconductor electrode (SE), source and drain (SD), contact
hole (CH), and pixel electrode (PE). Therefore, the com-
plex manufacturing processes of these displays make the
TFT-LCD subject to many kinds of defects. Many factors
contribute to these defects such as the nonuniform color of
color filter substrate, the anisotropy of polarizer, the non-
uniformly distributed liquid crystal material, the open or
shorted scanning lines, the defective TFTs, the unevenness
of TFT-array substrate, and the foreign particles within liquid
crystal [215]. According to [216], [217], FPD defects can be
approximately classified into three types: area defects, line
defects and point defects. While Nam et al. in [15] classified
them into achromatic and chromatic. Mura (derived from
Japanese which means blemish) defect is one of the achro-
matic defects and is widely investigated among researchers
using AOI techniques. Mura defect is a local lightness vari-
ation on a surface without clear contours and causes an
unpleasant sensation to the human vision [215]. Figure 12
shows different types of Mura defects investigated in litera-
ture. According toWu et al. in [218], that classified TFT-LCD
defects into macro and micro defects, Mura defects are con-
sidered one of the macro defects that are relatively large and
can be recognized by naked eye. Despite of that, some Mura
defects are relatively hard to inspect and often appears as
low contrast and blurry contours. And the global intensity
inhomogeneity of defect-free region makes the inspection
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FIGURE 12. Different types of Mura defects.

even harder. As these Mura defect always has no distinct
difference from background region in both intensity and
gradient, simple image processing methods for detection are
infeasible [219]. In general, Mura assessment is performed
by observing any imperfections present on the scale of a few
pixels to usually less than 20% of the screen diagonal and not
on a large area [220]. Researchers in [221], [222] investigated
one of the assembly processes that may produce gap Mura
defect in TFT-LCD. In this process, the assembly of the two
glass substrates with sealant around the four sides takes place.
The sealant is dispensed from syringes, leaving a very narrow
space called the cell gap between the two substrates, which is
later filled with the liquid crystal material. However, in some
cases during the attachment process, the glass substrates
may not be aligned with each other. Moreover, the distance
between them may not be the same at every point. When
this occur, the assembled TFT-LCD can be observed with
blurred interference patterns. The three main causes that may
contribute to such situation are: are nonuniformity of the
sealant (bubbles inside the sealant or excess sealant) around
the panel, foreign materials in the panel, and a fibre cluster at
the edge of the panel. The main advantage in the inspection of
this method, the testing procedure takes place before injecting
the liquid crystal material which can prevent the waste of
material in case a defect has been detected.

Authors in [223]–[229] considered inspecting polarising
film defects, according to the fact that polarising film is a key
component in LCDs. Special aesthetic defects in polymeric
film polarizers have nearly identical reflectivity and transmis-
sivity as normal regions. Such defects, in the industry known
as ‘‘convex or concave points’’, have extremely low contrast
and are difficult to image under normal illumination. Authors
in [224]–[227], [229] defined them as ‘‘transparent defects’’,
such as dents, bulges and transparent impurities. Because of
their extremely low contrast, these transparent points are the
main obstacle to detecting defects in polymeric polarizers
with existing detection technology. According to Deng et al.
in [225] machine vision is the only feasible way for detecting
the aesthetic defects of polymeric film polarizer, where they
simulated the defects using lens optical arrangement.

Wijesinghe et al. in [230] investigated defects that occur
in liquid resins. Liquid resins are gel substances that located
between the window glass layer, optical thin film, and LCD
panels. Several defects can occur in these resins such as fine
dirt (dust particles) and impurities, which may lead to change
the refractive index of the LCD panel. These kinds of defects
require high resolution capabilities for the optical inspections
system, therefore optical coherence tomography (OCT) was
proposed to aid the image acquisition system. Ferreira et al.
in [217] investigated a type of point defects that evaluates
sub-pixel functional defects in the pixel of the display. They
have also considered a special type of point defect that is
called joint defects which are the defects that occurs on
small number of adjacent pixels. For a colored LCD, subpixel
elements (also called dots) are referred to the red, green, and
blue subpixels that create each colored pixel. In this study
they have constructed an AOI such that the resolution of the
image sensor (e.g. camera) can be less than the resolution of
the inspected display, by addressing the display with sparse
periodic pixel patterns, while analyzing the aperiodicities in
the display response to those patterns. Additionally, a color
transformation between the sensor color space and the dis-
play color space compensates the crosstalk between sensor
and display RGB channels, disambiguating intra-pixel dot
intensities.

Lin et al. in [231] were one of the early researchers to
inspect light guide plate used in LCD backlight module. The
purpose was to detect the degree of non-uniformity of these
plates by analyzing the intensity of light reflected by the tiny
holes of the plates. The non-uniform regions will appear as
bright spots which have larger intensity than the other regions.
Lin and Jhuo in [232] also inspected backlight module defects
in LCDs such as nonuniform luminance. Usually in inspect-
ing such defects a luminance colorimeter is used to examine
the luminance emitted from selected areas called check points
within the backlight module as shown in Figure 13(b). How-
ever, since backlight module consists of many check points,
this study proposed fast luminance inspector that uses a CCD
camera to inspect multiple backlight modules simultaneously
as shown in Figure 13(a). This can enhance the inspection
speed remarkably and make their system suitable for online
production inspection compared with other similar studies
such as in [231].

More recently, the market for Organic LED (OLED) has
grown rapidly and a challenge between both LCD and OLED
technologies has risen to the surface for their applications,
especially in the small-sized display market. Compared with
OLEDs, LCDs have advantages in lifetime, cost, resolution
density and peak brightness. While, OLEDs are emissive;
their inherent advantages are obvious, such as true black
state, fast response time and an ultra-thin profile, which
enables flexible displays [211]. As the case in LCD pan-
els, OLED panels are subjected to many types of defects.
Kwak et al. in [233] considered a special type of defects
in OLED called salt-and-pepper defects, which appear as
dispersion of black and white pixels across the display.
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FIGURE 13. LCD backlight module inspection [232].

This type of defects is caused by a malfunction in the
chemical process and is considered difficult to detect using
conventional automatic fault detection methods that spe-
cialize in recognizing certain shapes, such as line or Mura
defects. Park and Kweon in [234] considered ambiguous
surface defects that are difficult to detect in active-matrix
organic light-emitting diode (AMOLED) touch displays. Dif-
ferent types of ambiguous defects were considered in this
study such as scratch, long dust, circle dust, pit and stain.
This paper highlighted some problems in inspecting such
defects, such as confusing critical and non-critical defects.
For instance, dust defect which is considered non-critical
defects because it can be removed easily can be confused with
scratch which is considered a critical defect. Authors in [235],
[236] proposed AOI system that can detect defect in direc-
tional surface defects in general. To validate the efficiency
of their system, they conducted experimental trials on defec-
tive and non-defective samples of polymer light-emitting
diode (PLED) and OLED.

Table 7 summarizes the defects investigated in literature
using AOI system for different FPD types.

E. OTHER DEFECTS
In the previous sections (III-A-III-D) we discussed about the
most common inspected components in literature in a catego-
rizedmanner. However, other researchers have studied certain
electronic component defects that are not widely investigated.
For instance, Ko et al. in [289] inspected four types of defects
in complementarymetal-oxide-semiconductor (CMOS) cam-
era module named black and white defect, dim defect, color
defect, and line defects. Their method achieved an overall
of 99.6% inspection accuracy. However, they chose different
inspection algorithms for each type of defect inspected, which
reduce the efficiency of their method to deal with new defect

TABLE 7. Summary of articles that used AOI system to investigate FPD
defects.

types and increase the complexity and time consumption.
Furthermore, particles in the range of 2 – 3 pixels were
not accurately detected. Infrared Cut-off (IR-CUT) filter in
CMOS and charge-coupled device (CCD) cameras is also one
of the investigated components in literature. IR-CUT filter is
designed to reflect or block mid-infrared wavelengths while
passing visible light. It is applied in all kinds of color cameras
and video devices to prevent infrared light radiation from
reaching imaging sensor, in an attempt to capture images
as close to those perceived by the human eye as possible.
Defects in this part can affect quality of the image, through
chromatic aberration phenomenon and redundant objects in
the image. Therefore, Liu and Yu in [290] proposed an AOI
system to investigate three types of common surface defects
in IR-CUT filter: stain, scratch, and edge crack. Stain is
caused by the dirt in the air or dirty objects in contact with
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it. The cleaning and testing process of optical IR-CUT filter
may bring scratches on the surface by contact with sharp
things such as tweezers. Crack is generated in the process of
segmentation after coating.

Lin et al. in [291], [292] considered inspecting rip-
ple defects in the surface barrier layer chips of ceramic
capacitors. Difficulties exist in automatically inspecting rip-
ple defects because of their semi-opaque and unstructured
appearances, the gradual changes of their intensity levels,
and the low intensity contrast between their surfaces and
the rough exterior of a the chip as shown in Figure 14.
To overcome these difficulties the sample image has to
be converted to the frequency domain in order to capture
the defect features as will be explained in section V-B1.
Sun et al. in [293] considered inspecting four types of thermal
fuses defects. A thermal fuse, also known as a thermal cut-off,
is an important component in both electrical and electronic
devices. Thermal fuses prevent circuits from overheating
or becoming overloaded. While fuses generally allow the
passage of current, they can short circuit to cut power to
appliances as a safety feature. The four inspected defects in
this study are located on the head of the thermal fuse which
are bur, black dot, small-head, and flake defects. Bur defect
(Figure 15(a)) appears as a deckle edge in the outer ring
area of the fuse case, it is mainly caused by using incorrect
material for the lead or worn out punch. This defect is very
difficult to be detected by human inspector even with the
help of magnifier. Black dot defect (Figure 15(b)) is mainly
caused by the existence of foreign materials (e.g. dirt or dust)
during the assembly of the case and lead. Small-head defects
(Figure 15(c)) occurs when insufficient force is provided dur-
ing the punching process of the lead, this will cause smaller
dimension of the head diameter. Flake defects (Figure 15(d))
is caused by the chip-off of the case wall during the electro-
plating process.

FIGURE 14. Example of ripple defect investigated in [291], [292].

Table 8 summarizes miscellaneous defects that were inves-
tigated using AOI techniques.

IV. IMAGE ACQUISITION TECHNOLOGIES - HARDWARE
SYSTEMS
An effective imagery system should ensure minimum escape
rates and false alarms [300]. Image quality is an essential

FIGURE 15. Defects of thermal fuse. a Bur, b black-dot, c small-head,d
flake [293].

TABLE 8. Summary of articles that used AOI system to investigate
miscellaneous electronic components defects.

prerequisite for data acquisition and processing. Therefore,
a careful consideration should be made for the selection of
appropriate image acquisition system. According to Chin and
Harlow in [13], a standard AOI system consists of camera
and lightning setup, computer (processor), conveyor and sort-
ing mechanism as shown in Figure 16. The illumination is
responsible for providing constant/customized lightning con-
ditions. The camera that includes an image sensor is respon-
sible in acquiring the image. The conveyor is responsible
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FIGURE 16. AOI system.

in moving the object across different inspection stages. The
computer is responsible for applying the inspection algorithm
in terms of prepossessing, feature extraction and selection
and classification. Finally, the sorting mechanism with the of
industrial controller (e.g. PLC) is responsible for separating
the products for further consideration (e.g. scrap, recycle etc.)
according to the decision made by the inspection algorithm.

A. CONTRAST AND ILLUMINATION SETTINGS
Contrast is an important factor that contribute to image qual-
ity, it defines the differences in intensity values between
the inspected object and the background [22]. Therefore,
it is very important to select background that has different
intensity levels than the inspected items, so that the inspected
components can be distinguished when applying image pro-
cessing techniques and feature extraction. Contrast and other
factors that contribute to image quality can be also affected by
illumination and lightning settings, since the camera does not
see the object; it sees the light reflected by the object. Good
illumination can reduce shadow, noise, and reflection and
increase image contrast, thereby shortening the image pro-
cessing time and increasing their accuracy [301]. In machine
vision applications, the environment light is avoided since it
changes with the change of environmental conditions and this
can affect the image quality and thus the detection algorithm.
Therefore, non-varying illumination sources are used in such
applications [302]. Inspected component size, color, surface
feature, geometry, material, inspection environment and sys-
tem needs are all important factors to be considered in select-
ing the right illumination source. LED, fluorescent lights
and quartz halogen light with fibre optics are commonly
used as illumination sources for machine vision applications.
Moreover, positioning of the illumination source plays impor-
tant role as well especially when inspecting polished and
shiny objects (e.g. metal parts and solder joints) that reflects

light with specular reflections. On the other hand, dull sur-
faces such as plastic diffuse light in several directions [303].
Therefore, the positioning of the illumination source highly
depends on the applications as well [301]. Bartlet et al.
in [304] used four overhead fluorescent lamps and one flu-
orescent ring lamp to effectively inspect solder joints and
avoid shadows in the captured image. Capson et al. in [140]
proposed multilayer tiered-color illumination approach to
inspect solder joint defects. The illumination setup that they
proposed consisted of circular red and blue fluorescent lights
designed in a hemispherical configuration and subjected to
the solder joint with different angles, in which blue and red
light are reflected by the surface that each light is subjected
to. The reflected light will have special contour geometry
according to the quality of the solder joint. This techniquewill
capture the 3D behaviour of the solder joint in to 2D image.
Many recently published articles about solder joint defects
used the same techniques with some or no modifications as
shown in Table 3. Wu et al. in [171] used 3 colors (red, green,
and blue) shaped in hemispherical array of LEDs as shown
in Figure 17. The red, green, and blue lights irradiate to the
flat, the slow slant, and the rapid slant of the solder joint
surfaces, which are reflected to the camera, respectively such
that each solder joint quality condition will have unique color
distribution based on the light reflection. Zeng et al. in [305],
[306] used tiered-color ring-shaped LEDs to highlight PCB
components such asmarkings, and via-holes. The color distri-
bution direction of each solder joint is also evaluated in order
to aid in specifying the type of defect. However, these studies
were considered a foundation for an inspection system and
did not apply defect classification approach. Despite of multi-
layer tiered-color illumination ability’s to highlight the defec-
tive features of solder joints efficiently, this system requires
three images of each solder joint to be scanned and pro-
cessed, this can increase the computational time significantly.
Chiu and Perng in [168] proposed a single tiered-color illu-
mination setting by choosing an optimal incident angle (ϕ)
that can do the inspection with processing a single image
only as shown in Figure 18. ϕ must be carefully selected
in order to mimic the efficiency of three layers tiered-color
lights. Shadow on inspected components should be avoided,
therefore the incident angle should be as small as possible.

FIGURE 17. Illumination setup considered by Wu et al. in [171].
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FIGURE 18. Illumination setup considered by Chiu et al. in [168].

Ideally ϕ must be equal to zero; however, in this case the
light must be placed either in front of the camera or at an
infinite distance from the camera which are both unrealis-
tic. Therefore, by trial and error the study tested a small
angle range between 20◦ and 30◦ to acquire high quality
inspection images. Liu and Yu in [290] proposed special
mechanical configuration and illumination settings to inspect
IR-CUT filter surface defects. Because there is no refracted
infrared light into the optical IR-CUT filter, another side
of it cannot be captured in a single photo. The researchers
thus constructed a flipping mechanism to flip the samples to
both sides. Multi-layer infrared LED light were considered
as an illumination system for this study (shown in Figure 19)
because infrared beam cannot pass through the IR-CUT filter
and therefore the nature of the reflected light will be an
indication for a defect detected. The angle for the infrared
beams were carefully chosen, such that two layers of infrared
lights were used. The first layer omits a beam with an angle
of 30◦, which is intended to reflect a perpendicular beam
from major surface defects detected. The 60◦ tilted beam is
intended to reflect the light from the minor surface defects
perpendicularly to the camera. In case of no defect has been
detected, the light will be scattered such that it will not be
detected by the camera. Tsai and Tsai in [249] used uncon-
ventional illumination and image acquisition techniques in

FIGURE 19. Illumination setup considered by Liu et al. in [290].

inspecting Mura defects in LCDs. The LCD panel is assumed
to move along a track. While the panel passes through a fixed
camera, the light reflection from different angles can effec-
tively enhance the Mura defect in the low-contrast images.
The Mura detection problem is therefore treated as a motion
analysis in image sequences using optical flow techniques.
Figure 20(a) shows the configuration for the image acqui-
sition system. Figure 20(b) shows the difference between
using conventional illumination and camera settings and the
proposed method in highlighting the Mura defect. Based on
these spatial arrangements, they used optical flow algorithm
to highlight Mura defects in LCDs, where this algorithm
calculates the displacement of brightness from one frame
to another. There are two types of optical flow algorithms.
The first type calculates the displacement of brightness for
the entire pixels of the image (called dense optical flow
algorithm). The second type calculates the displacement for
specific pixels of the image (called sparse optical flow algo-
rithm) [307]. Due to its efficiency and accuracy, a sparse
optical flow algorithm called Lucas-Kanade were used for
on-line defect inspection in manufacturing. Here three types
of feature values were calculated using Lucas-Kanade algo-
rithm to highlightMura defects. These feature values are flow
magnitude, mean flow magnitude and flow density in the
optical flow field. A certain threshold for each feature value
were decided such that if the value exceeds the threshold the
sample image is considered to have a Mura defect and the
opposite otherwise.

FIGURE 20. Imaging setup proposed by Tsai and Tsai in [249].

Authors in [221], [222] took advantage of a phenomenon
called optical interference pattern to investigate certain type
of Mura defects in TFT-LCD. This phenomenon is due to
interference caused by light reflecting and refracting from
two different transparent surfaces. This will cause optical
fringes, which are light and dark bands that are in phase or out
of phase with each other as shown in Figure 21. The patterns
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FIGURE 21. Illumination setup proposed in [221], [222].

of these fringes are indicators of Mura defects. Sodium light
were used to highlight the fringes as monochromic light high-
lights the fringes into dark and light bands. When a regular
light source used instead (e.g.fluorescent lamp), the interfer-
ence pattern will appear as color fringes of different wave-
lengths. However, if one uses a monochromatic light source,
such as a sodium lamp, an alternating bright and dark inter-
ference pattern appears. Deng et al. in [227] proposed binary
structural illumination source to enhance the image contrast
of the aesthetic defects in polymeric polarizer of TFT-LCD
as shown in Figure 22(a). The illumination is provided by
binary black and white stripes displayed on a display, such
that the width of the stripes can be controlled, and the defect
sample is placed between the camera and the striped light.
A conventional light source with uniform brightness was
used to ensure the image is clear. Compared with using a
conventional illumination settings, binary structured lighting
improves the contrast of the defects by a range between
36 – 84.7% depending on the nature of the defect [225].
Figure 22(a) shows the difference in detecting the defects
using conventional light source and striped light source.

Chang et al. in [288] offered an AOI system to filter and
classify touch panel glass defects. Their illumination setting
consisted of two LED lights with fan-shaped light transmis-
sion. For a perfectly smooth surface the camera will record a
mostly dark image since the majority of the light reflected is
specular. This will indicate that no defect has been detected
as shown in Figure 23(a). The presence of defect will cause
the light to scatter in the direction of the camera, appearing as
a bright area in a dark background as shown in Figure 23(b).
To reduce false alarm rates, the carrier of the inspected plates
were coated with high reflective substance so that the subject
appears darker.

Table 9 summarizes advantages and limitations for the
various illumination setups used for inspection.

B. CAMERA/LENS SELECTION AND POSITIONING
According to National Instruments in [309], to set up an AOI
system using imagery modus operandi, a number of factors
need to be considered. These factors are: the working distance
(WD) (distance from the camera lens to the object under
inspection), resolution (smallest feature to be inspected),

FIGURE 22. Illumination setup proposed by Deng et al. in [227].

FIGURE 23. Illumination setup proposed by Chang et al. in [288].

pixel resolution (PR) (the minimum number of pixels needed
to represent the object under inspection), depth of field (max-
imum object depth that remains in focus), image sensor size
(SZ), the size of sensor active area, field of view (FOV)
(the area of the object under inspection that the camera can
acquire), and frame rate (FR) as shown in Figure 24. The com-
mon image sensors used in inspection cameras are CCD, and
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TABLE 9. Summary for illumination systems used in AOI applications.

CMOS which mimics human’s perception in vision [310].
In addition to the previous factors several criteria are con-
sidered in determining the suitable image sensor and its size
such as responsivity, dynamic range, uniformity, speed of
operation and reliability. Using the field of view (FOV),

the pixel resolution can be obtained by equation 1

PR = 2 ·
(

FOV
Resolution

)
(1)
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And the focal length, which is used to determine the lens
specifications, can be obtained using equation 2

FL =
SZ ·WD
FOV

(2)

Focal length is important for selecting the right lens for
application, as can be seen from equation 2, the three factors
that affect selection of right focal length are sensor size, work-
ing distance and field of view. Frame rate is also important
factor to consider when selecting a camera especially in batch
inspection in industries that have high production rate [303].

Spatial calibration techniques are commonly used in order
to set the camera in optimal position for the application.
In most optical inspection applications, the position of the
camera is fixed [300] and positioned in 90◦ with the plane of
inspected components to avoid image distortion and reduce
perspective errors as shown in Figure 24 [309]. However,
in some cases the camera can be aligned in different angles.
In the following discussion, we will highlight the research
articles that used unconventional camera setups.

FIGURE 24. Factors considered in selecting camera and lens [309].

For inspecting glass substrate defects in TFT-LCD, cam-
eras are aligned in two different positions: transmission and
reflection. In transmission position the camera captures the
projected images with light transmitting through the glass

whereas in the reflection position it captures the reflected
images with light reflecting off the substrates as shown
in Figure 25 [263]. Hence, Yousefian-Jazi et al. in [263]
used the transmission method for inspecting TFT-LCD glass
substrates. Similar techniques are considered when inspect-
ing highly reflective surfaces, in which certain geometri-
cal laws must be applied to measure the optimum lengths
and angles of the camera and illumination settings [311].
Ong et al. in [169] proposed dual viewing angle to acquire
solder joint images for defects inspection. Their approach
consisted of conventional orthogonal and oblique camera
setups as shown in Figure 26. The oblique setup was adjusted
with inclined viewing direction of 40◦ by using pyramid mir-
ror. The setting seems to provide better geometrical informa-
tion of the solder joint and can save feature extractions step by
sending the acquired images directly for classification. How-
ever, the setup procedure is laborious and prone to human
error. Li et al. in [206] proposed a setup for detecting the
height of solder balls in BGA. They used stereo vision system
to capture the 3D nature of the solder ball using two CCD
cameras at two opposing angles and two ring lights around
each camera lens that captures two 2D images in parallel as
shown in Figure 27. Because of the reflective nature of solder
balls, the lighting provides the means to generate features
on the balls which are then used to determine height. These
features will appear as bright regions in the captured images.
This method of acquiring image can reduce the time for the
feature extraction process such as simple segmentation and
thresholding approaches are enough to determine the features
of the component. Zhao et al. in [312] proposed a similar
stereo vision system using two cameras to inspect the pins
on multi-type electrical connectors of the components.

FIGURE 25. (a) transmission and (b) reflection imaging system [263].

Because each film capacitor has six surfaces to be detected,
Yang et al. in [299] used four image acquisition systems that
are adjusted to detect the surface defects of capacitors. Each
camera gets the image information of two surfaces from side
angle, as shown in Figure 28. When the capacitor reaches the
specified position, a laser tube will number the capacitor and
produce trigger signal. Industrial camera captures the surface
image of this capacitor and optical inspection algorithms are
applied to detect the surface defects in real time. Park and
Kweon in [234] proposed four image acquisition systems as
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FIGURE 26. Camera setups considered by Ong et al. in [169].

FIGURE 27. Imaging system setup considered by Li et al. in [206].

FIGURE 28. Imaging system setup considered by Yang et al. in [299].

well that consisted of four different combinations of camera
and LED sources with different orientation angles for inspect-
ing AMOLED defects as shown in Figure 29. The multiple
imaging systems with different orientation angles are used
for acquiring images for the same component multiple times

FIGURE 29. Imaging system setup considered by Park et al. in [234].

such that the defective features are detected from at least one
of the four images. The four images is then compared with
each other using image filtering to choose the best image that
describe the defective features such that feature extraction
and classification algorithms can be applied on it.

C. AUXILIARY SYSTEMS AND OTHER IMAGE ACQUISITION
TECHNIQUES
Scanning Electron Microscope SEM and Optical Coherence
Technology OCT are two examples of auxiliary systems that
still need visible light sensor devices to capture the image.
OCT is a non-invasive and non-destructive optical imaging
technique that uses a low-coherence Michelson interferom-
eter to generate high-resolution cross-sectional imaging of
samples. TheOCT technique shows the structure of amaterial
by measuring small changes in back-scattered light at various
depths. The OCT- scanning depth is a function of absorption
and scattering with a resolution on the order of microns and a
depth range of 3 – 4mm [230], [313]. The interference signal
from the interferometer can be acquired using CMOS or CCD
line scan camera. The OCT technique has been successfully
applied to the early diagnosis of many diseases originating
under superficial areas, including cancers [314]. For the scope
of this article, many researchers used OCT to inspect various
FPD defects such as optical thin film, industrial resin, and
minute defects in LCDs as shown in Figure 30. SEM is
usually used to detect micro defects in semiconductor wafer
(shown in Figure 31(b)) and LED chips with the aid of image
sensing device, it can be used also to detect small defects in
FPD as in [315].

FIGURE 30. OCT setup used in [313].
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FIGURE 31. Various semiconductor wafer testing techniques.

The use of alternative methods of imagery alongside the
traditional surface optical systems such as thermography and
X-ray are also gaining momentum. For example, X-ray scan-
ning for alignment and defect inspection of IC components
and inner layers of PCBs as shown in Figure 32(a). However,
X-ray technology is not efficient in detecting fine cracks and
open solder joints, as the small air gap in the defects do not
attenuate theX-rays. Although 3DX-ray system (e.g. CT) can
solve some of these problems, but data processing and image
resolutions could reduce their deployment in embedded in
process production systems [209]. In thermography, a camera
with a thermal sensor is used to measure the infrared radiation
from the sample and convert the radiation flux to temperature.
The temperature distribution can be then illustrated in a form
of thermal images. For inspection applications, some defects
such as solder ball defects will change the heat flow result-
ing in abnormal thermal behaviours, which is dependent on
the defect size, location, and thermal physical properties of
the material as shown in Figure 32(b) [209]. In such cases
thermography inspection is considered an efficient tool to
highlight these defects for further analysis and classification.
Unlike previously mentioned technologies, circuit probe does
not need image sensor to operate as the defect map (WM)
is generated according to the data provided by circuit probe.
As mentioned in section III-B, this technology is widely used
for semiconductor wafer inspection as shown in Figure 31(a).
Table 10 summarizes the other image acquisition techniques
and auxiliary systems used for AOI in literature.

FIGURE 32. Various technologies used for solder ball inspection.

TABLE 10. Summary of articles that other image acquisition techniques
and auxiliary systems.

V. INSPECTION ALGORITHM
Most of traditional inspection systems use subtraction or
template matching technique to compare the inspected com-
ponent with the reference template image as will be shown in
section V-B3. Choosing a suitable inspection algorithm can
enhance the classification process and avoid escape and false
alarms rates. Usually in AOI application, the collected images
have to undergo some enhancement (preprocessing) before
the application of inspection algorithms. Feature extraction
and selection techniques are then used to segment the defec-
tive regions and to discover the important defect features.
The final stage is to provide the processed information to the
classifier algorithm as shown in Figure 16.

A. PREPROCESSING
The purpose of this stage is to preprocess the raw image
for the next stage of feature extraction and selection [310].
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This stage involves many operations such as image mask-
ing, spatial filtering and geometric transformations. Masking
operations can be applied to the acquired image in order to
define the region of interest (ROI). This step is very important
in reducing the inspection time such that the feature extrac-
tion is only applied into certain region instead of the entire
image. After specifying the ROI, the resulting image can be
subjected to geometric transformation or/and filtering for fur-
ther enhancement before applying the inspection algorithm.
Geometric transformation involves calculating the projection
of each pixel in the ROI onto another space. This method can
help in image restoration and correction in case of any pres-
ence of geometric distortion. The geometric transformation
includes scaling, rotating and translation of the image [189].

Image denoising and filtering are common practices in pre-
processing acquired images before using feature extraction
algorithms. The process of image data filtering and denoising
reduces noise and enhances the data for highlighting the
important features. They can smooth, sharpen, transform, and
remove noise from the image, so that the inspection algorithm
can do the feature extraction task easily. For instance, image
filtering and denoising techniques are very useful in removing
random defects from mixed patterns WM so that classifica-
tion algorithms can specify the type of defect according to
the systematic pattern [109]. The mathematical application
of filters can be in form of linear or non-linear. In the case of
linear filters, a convolution kernel is specified, it can be square
(e.g. 3 × 3), or a rectangle (e.g. 3 × 5). Examples of linear
filters are Laplacian, and Gaussian filters. Non-linear filters
use non-linear functions for the parameters of the kernel,
the process of recalculating the pixel is similar as in the linear
filters. Some examples of nonlinear filters are median filters
and Prewitt filter. Median filters are popular preprocessing
method for abnormality detection in electronic device inspec-
tion applications [71]. More advanced denoising techniques
such as deep learning models [322], low rank approxima-
tion [323], and weighted nuclear norm minimization [324]
are also used in literature. Park and Kweon in [234] proposed
novel filtering technique called neighboring difference fil-
ter (NDF) from the background of AMOLED sample images.
NDF is used to compare the intensity of neighboring pixel
regions with a strategically placed gap space to differentiate
similar patterns from other (i.e. abnormality detection).

B. FEATURE EXTRACTION AND SELECTION
Feature extraction process involves applying one or more
of image processing techniques (e.g. frequency analysis and
segmentation) in order to describe the characteristics of the
studied regions (e.g. defects and abnormalities). These char-
acteristics are usually described using a set of values called
Feature Values that can be represented in vector or matrix
form. The purpose of feature selection step is to consider the
important feature values only that can contribute to the clas-
sification process and discard the redundant ones. This step
is very essential in reducing the computational time for the
inspection algorithm. Principle Component Analysis is very

popular technique used in feature selection. Other algorithms
such as along Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO), Adaboost
and Neural Networks are also used for this purpose.

1) FREQUENCY DOMAIN ANALYSIS
Frequency domain analysis can be used to convert pictures
from the spatial domain to the frequency domain. This is
very useful for capturing the global structure of the image
and minimising reconstruction errors. In frequency analysis,
high pass and low pass frequency filters can be used to atten-
uate the unnecessary noise in the image. After attenuation,
the picture can be transformed back to the spatial domain for
further processing. Frequency analysis is preferably used in
investigating defects that have low contrast and high illumina-
tion noise such that spatial domain cannot capture the features
of the defect. Examples of defects that have these features
are Mura defects shown in Figure 12, and ripple defects in
ceramic capacitors shown in Figure 14. The frequency repre-
sentation can be obtained by various transform functions such
as Fast Fourier Transform (FFT), DiscreteWavelet Transform
(DWT), and Discreet Cosine Transform (DCT). Transform
functions allows for a noninvertible transformation from the
spatial domain to a reduced dimensionality feature space.
Thus, facilitating classification with substantially less fea-
tures and manageable classification error.

DCT is mainly applied to perform image reconstruction
and dimension reduction by converting the image to a fre-
quency spectrum and attenuates certain coefficients that lays
into two major bands, namely, low frequency, and high
frequency [125]. In most AOI applications, since illumi-
nation variations mainly lie in the low-frequency band (in
upper-left corner of the frequency spectrum), an appropriate
number of DCT coefficients in low-frequency band are trun-
cated to minimize variations under different lighting condi-
tions as shown in Figure 33 [161]. Chen and Kuo in [240]
applied DCT and background image filtering strategy to
detect Mura defects in TFT-LCD. The background of the
sample images was first located and reconstructed using the
DCT approach with the aid of low-pass filtering to illuminate
unwanted noise. DCT coefficients are then selected and

FIGURE 33. Truncating lower frequency coefficient (C00).
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the image can be transformed back to the spatial domain
using inverse DCT. The Mura defects can be then sub-
tracted from the background using image subtraction method.
Despite the slight difference in brightness and non-uniformity
between blob-Mura defects and the background, the proposed
approach is very efficient in detecting blob-Mura defects
as well. However, because of the low-pass filtering step
conducted, micro defects can be eliminated with the noise.
Therefore, the approach proposed cannot handle detecting
micro-defects in TFT-LCD. Even if it was modified to detect
micro-defect, the computational time of the process will be
lengthy. Perng and Chen in [236] used DCT to highlight the
defective features directional textured surfaces in FPD such
as PLED and OLED. The sample images were transformed to
the frequency domain using DCT so that the dominant direc-
tions of the textures are compacted with the lower frequency
band coefficients of the frequency image. The linear primi-
tives associated with high energy in the DCT domain are then
eliminated by reducing them to zero. After that, the image is
transformed back to the spatial domain using inverse DCT,
which makes the defective features visible. Thresholding and
Statistical Process Control (SPC) chart were then used to
classify the defects. Several advantages were observed using
this approach such that it is insensitive to horizontal and
vertical shifting, changes in illumination, and image rotation.
However, this study did not provide any details about the
accuracy of the proposed approach nor of the computational
time consumed. Similarly, Lin in [298] used DCT to inves-
tigate tiny surface defects in Surface Barrier Layer found in
passive electronic components, whose random surface texture
contains no repetitions of basic texture primitives. Therefore,
DCT approach is well suited to be applied in this problem
since it does not require any textural feature information. The
proposed method achieved a relatively high overall accuracy
of 94.74%. However, this method is only suitable to detect
defects in the range between two to fourteen pixels. Further-
more, this method is considered time consuming since it takes
four seconds only to apply forward and inverse DCT without
the classification takes place. Lin and Chiu in [38], [40]
used Block discrete cosine transform (BDCT) to highlight
the defected features of tiny surface flaws in epoxy domes
of LEDs and blemishes of curved LED lenses respectively.
BDCT method is similar to DCT; however, in BDCT the
image is divided into non-overlapping image blocks of equal
sizes which DCT can take place in each block separately
instead of applying DCT to the whole image. In both studies
it was found that the dark background of the image can affect
the BDCT and can be confused with the defect features.
Therefore, after specifying the ROI, an image mask is used to
delineate the ROI. Since BDCT can only process rectangular
regions and the ROI is circular, therefore the dark background
that has been removed can be replaced with a background
that has duplicated average gray level of the ROI. Uneven
self-illumination lighting will result in gradual shades, which
will cause high frequency peaks after performing BDCT.
Therefore, gray relational analysis is used to attenuate the

high frequency values then transform the image again to the
spatial domain after the attenuation. Otsu-thresolding were
then used to transform the resulted image into digital image
with highlighted flaws being detected. Lin and Ho in [125]
found that after transforming the digital image of a chip in
a wafer to the DCT domain, the frequencies of the pinhole
defects spread around the middle and high frequency regions.
Therefore, to highlight pinhole defects features, high pass
filtering where used to attenuate the frequency components of
the non-defect regions by setting their values to zero. Similar
to the approaches that were conducted in [38], [40] to adapt
the background for DCT implementing, the proposed method
were insensitive to light variations, since the low frequency
band has been eliminated. However, this method has some
limitations such as defect size, background property and pro-
cessing time. Defects of large size features can be lost after
the attenuation of low frequency band. Moreover, defects
embedded in structure textures cannot be detected because
this method is suitably applied to identify defects in random
textures. Finally, the proposed method takes four seconds to
process a forward and an inverse DCT transformation, which
could not meet the requirements of an on-line inspections
system.

As mentioned earlier that DWT is one of the frequency
domain analysis methods for feature extraction. DWT has
the advantage of providing an easy way for multi-resolution
representation, from which defect texture features can be
easily extracted. The merits of using DWT include local
image processing, simple calculations, high speed processing
and multiple image information. Lin in [36] considered one
type of wavelet transform called Haar transform to highlight
water-drop defects on LED chip surface. Haar transform is
considered the simplest approach among wavelet transforms.
The transform is performed to each row of pixel values and
then performing another wavelet transform to each column.
Four wavelet transforms were used that generate four sub-
images; one level of wavelet decomposition generates one
smooth sub-image and three detail sub-images that contain
fine structures with horizontal, vertical and diagonal orienta-
tions. Each sub-image represents certain characteristic that
has half the number of columns and rows of the original
image. Wu et al. in [218] used Fourier transform to high-
light the micro-defects of TFT-LCD by removing background
textures. Haar-wavelet transform were also used to eliminate
the influence of uneven illumination. Ferreira et al. in [217]
took advantage of the periodicity and used Fourier filter-
ing technique with the aid of thresholding to highlight dots
defects in FPDs. The factor that was under scope in this
study was the luminous intensity of dots, such that defective
dots may be identified by changes in the expected light
functional response to their addressing digital value. The
main advantage of this study that it was able to construct
an AOI system using a camera that can have lower reso-
lution of that in the display inspected. However, there are
restrictions in detecting defects using the Fourier transform
when the frequency component of a defect may not have a
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repeated pattern [260]. Tsai and Hung in [251] proposed a
system based on Fourier reconstruction and wavelet trans-
form for inspectingmicro-defects such as pinholes, scratches,
and particles in TFT-LCD. This study works on the 1D
line images instead of the traditional two-dimensional area
images. Unwanted frequency components, which represent
the periodic structural pattern of the image in the frequency
spectrum, can be eliminated. Using inverse Fourier transform,
the image can be transformed back to the spatial domain.
Finally, wavelet decomposition is further applied to remove
uneven illumination in the filtered image so that defects can
be easily segmented for the classification process. Control
limits were considered for the classification process using
certain threshold to distinguish between anomalies and uni-
form background. In similar study [252], Tsai et al. conducted
a slightly different approach in which the segmented 1D
profile image is divided into small segments, each of the
length of the repeated period for a given TFT-LCD panel.
The divided 1D segments are then combined as a 2D image.
Then the same procedure applies on the 2D image as it was
on the 1D image in the previous study. Another difference
in this study, that it did not use wavelet transform. The
proposed methods have main advantage of not relying on
the design of quantitative features to describe various defect
types, nor require a template image for comparison. Thus,
they alleviate all limitations of the feature extraction and tem-
plate matching methods. However, several drawbacks were
observed in [252] such as the periodic of a faultless scan
line cannot be effectively removed since the number of the
divided segments is generally small with respect to the length
of the period in a scan line. Furthermore, themethod proposed
is rotation-dependent and computationally intensive [253].
In examining the previous two studies, which were conducted
by same first author, a contradictory statement were found.
In Tsai and Huang [251], they claimed that they were able to
detect micro-defects in high resolution images successfully.
However, in Tsai et al. [252] they referred to the previous
study to be unsuccessful in detecting micro-defects in high
resolution images. Another similar approach were proposed
by Tsai and Chuang that dealt with 1D profile image to
identify TFT-LCD panel micro-defects as well in [253]. This
approach integrated Normalized Cross Correlation (NCC)
method to identify anomalies by comparing the image seg-
ment with its two neighboring segments. This method has
reduced the number of segments considered compared with
the previous two studies, which in return reduced the com-
putational time. However, as the case in the previous studies,
the proposed method could not locate the exact position and
shape of the defect.

2) SEGMENTATION
Segmentation is a process of grouping an image into units
that are homogeneous with respect to one or more char-
acteristics; it is an important step in image processing
and feature extraction [325]. Segmentation can be divided
into three classes, thresholding, edge detection, and region

extraction [326]. Morphological operations are used to aid
segmentation process by removing the noise or unwanted
regions. Morphological operations contain erosion, dilation,
opening and closing processes.

a: THRESHOLDING
Thresholding techniques are mainly effective when the con-
trast between various features are well established. Thresh-
olding is considered one of the segmentation techniques
that split the image into two regions; a particle region
(e.g. feature or component) and background region with
the aid of gray-level threshold value [309]. In this manner,
all the gray-level pixel values that belong to the particle
region (above threshold value) are set to logic 1 and the
rest of pixels that represent background (below threshold-
value) are set to 0; in other words the image is converted
into binary image. The threshold value can be selected auto-
matically with the aid of a histogram [327]. The x-axis of
the histogram represents the gray-scale values of the image
(in case of 8-bit image it will be 0-255) and the y-axis
represent the number of pixels for each intensity value.
Choosing the right thresholding value is considered a key
factor in the thresholding process. In general, thresholding
techniques can be subdivided into two categories Global and
Local. Global thresholding performs the same mentioned in
the previous discussion, in which a single threshold value
from the histogram of the entire image is selected. How-
ever, local thresholding (also called adaptive thresholding)
uses localized gray-level information to choose multiple
threshold values. Local thresholding methods are superior
to the global ones when ununiform illumination settings are
applied. On the other hand, global thresholding is considered
much simpler and require less computational time. For defect
inspection applications, since the illumination settings are
well-controlled and uniform, global thresholding is prefer-
able [327], [328]. Otsu-thresholding is considered one of
the widely used global thresholding techniques. This method
selects threshold value that maximize the between-class vari-
ance of the histogram [327], [329]. Otsu-thresholding tech-
niques are preferably used when the feature of the defect has
high contrast when compared to the background. Example of
these defects are missing component and missing solder
defects in PCBs. Perng et al. in [33], [37] and Kuo et al.
in [42] used Otsu-thresholding to extract defect features in
SMD LEDs. In [37], they denoted to the resulting number
of pixels of the bright regions after applying thresholding
by a. A certain threshold k1 was defined, such that if a is
less than k1 that means there is a missing component and
the image is classified as missing component defect. Other-
wise, if a is greater than k1 that means the image has be
further analysed for other defects (wrong orientation, inverse
polarity, mouse bites and surface defects). A similar thresh-
old k2 were defined to classify images that contain mouse
bites defects. Figure 34 shows the bright regions extracted
after applying thresholding for different types of SMD LED
defects. Similar approaches were also conducted in [33], [42].
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FIGURE 34. a1–a6 are the input images for different defects. The brighter regions in b1–b6 are obtained by applying Otsu’s auto-thresholding [37]

However, in [42] template matching with the help of max-
imum correlation coefficients were also used to define
the threshold values along with Otsu-thrsholding. Li et al.
in [221] used thresholding to highlight the fringes fea-
tures in TFT-LCD, which may indicate a presence of Mura
defect. Width, ratio of fringe, curvature of fringe and fringe
size were then estimated from the resulting binary image
and used as inputs for a Neural Network for classification.
Noh et al. in [260] used adaptive thresholding technique
to investigate six types of polarising film defects in TFT-
LCD. The proposed approach determines the defect type
through image analysis using various features, such as the
geometric characteristics and the shape descriptor with inten-
sity distribution. Various rule-based algorithms were used
to classify the defects according to features extracted such
as minimum bounding rectangle, actual defect region and
region-based descriptor. The proposed approach achieved a
very high precision and recall rates in locating the defects.
However, the recall and precision rates for classification
results were considerably low. Yang et al. in [299] combined
adaptive thresholding with a frequency filtering technique
called Non-subsampled Contourlet Transform (NSCT) to
inspect surface defects of film capacitors. The NSCT was
developed from the wavelet theory as a multi-scale geometric
analysis method and was chosen due to its ability in describ-
ing the edge contours of film capacitor defects. Adaptive
thresholding with the aid of Gaussian kernel function is first
applied to separate the foreground from the background, and
therefore highlighting the defected features. The defects are
then classified according to the frequency distribution of
sample images to defected and non-defected. Their proposed
approach achieved an overall accuracy of 98.7% with 0.1s
inspection time. The main advantage in this study is the large
number of real samples used in the algorithm testing as they

used a total of 10000 capacitors, including 1000 defective
ones. This can validate their results remarkably and prove
the efficiency of their proposed method. Kwak et al. in [233]
proposed a simple yet effective algorithm to inspect salt-and-
pepper defects in OLED panels. First, the background of the
sample images is generated using median filter. Then the
generated images are subtracted from the original to highlight
the noise that represent the defects. Otsu-thresholding were
then used to binarize the image, such that the black pixels
of the binarized image represent defective pixels. Finally,
feature value was generated according to the number of pixels
and certain control limits were established to classify the
sample images as defect or non-defect. The proposed method
was compared to other algorithms such as DCT andDWT and
it was proven that the proposed method outperformed other
algorithms remarkably in terms of the computation time.
However, in terms of the accuracy, DWT and DCT outper-
formed the proposed method, especially when the noise level
is mid and high. Jiang et al. in [154] investigated four types
of golden fingers defects in PCBs. Using selected thresh-
old value, the binary image and gray level values for each
defected area was obtained. Due to the lack of sample data
provided, this study applied Bootstrap sampling technique
to generate more sample for the defective features based
on their gray level values. Four types of features related
to the gray level values were extracted from the generated
samples: sample mean, standard deviation, mean absolute
difference and skewness. These features were sent to clas-
sification algorithm to specify the defect type. However,
for using Bootstrap sampling, the illumination environment
must be well controlled. If a non-uniform lighting source
was used, the gray values obtained from the sample defect
images are no longer reliable. This will affect the analysis
and classification. Jiang et al. in [145] proposed an approach
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based on Gray Relational Theory for IC marking inspec-
tion. The basic idea of gray relational analysis is a ranking
scheme that ranks the order of the gray relationships among
several sub-systems. Several image processing techniques
were implemented to apply the gray relational theory. Image
rotation was first applied to make sure that IC is in correct
position for character identification. Morphological opening
operations were then applied to remove noise and help in the
segmentation process for the characters. Thresholding were
finally applied to convert the gray image into binary one in
order to reduce the data amount as possible. Six key features
were extracted using the previous processes: area, perimeter,
ferret elongation, diameter, compactness, and moment were
used to identify the type of problem occurred in the marking
process such as broken and wrong characters. As compared
to traditional methods (i.e Euclidean distance, Camberra dis-
tance, Chi-square, and correlation coefficient), there are three
advantages in the proposed approach: 1) no large amount
of data is needed; 2) no specific statistical data distribution
is required; and 3) there is no requirement for the indepen-
dency of the factors to be considered. Furthermore, their
proposed approach achieved an identification rate of 97.5%.
However, their study did not include IC marking recognition
for multitype, multidirectional, and various angular settings.
Also, they did not include trademarks and punctuations in
the IC marking recognition process. Furthermore, their pro-
posed approach did not integrate the software and hardware
into a whole automatic inspection system. Nagarajan et al.
in [146] proposed a similar study for IC marking errors such
as illegible characters, missing characters and upside down
printing. For character recognition, four feature extraction
methods were applied: projection profile, moment, zoning
(same as segmentation) and contour profile. After extracting
the features using the four methods mentioned, these features
are sent to neural network for classification according to the
three error types considered. Their approach achieved 100%
classification accuracy. However, the proposed approach does
not detect marking defects accurately when the IC chips are
placed with rotation angles [147]. Furthermore, the feature
extraction techniques considered in this study are time con-
suming that takes 1.844 – 2.093s for single inspection task.
Said et al. in [204] proposed a study to inspect non-wet
solder joints in processor sockets and BGAs. Images in this
study were acquired using X-ray optical inspection system.
Thresholding and segmentation approaches were done auto-
matically to locate the solder joint regionswithminimal effect
of illumination noise. This automatic process can be per-
formed with the aid of statistical modelling using a mixture
of Gaussian distributions to find the optimal threshold value.
The centroids of the solder joints are then located, and a
mathematical model were then estimated to check the degree
of alignment of each joint’s centroid with respect to joints
in the same directional cluster. A certain threshold was used
to classify the solders as defected and non-defected accord-
ing to the degree of alignment. The conducted performance
evaluation and resulting statistics showed that the proposed

algorithm provides a detection rate of 95.8%. Despite of
this method effectiveness to deal with nonuniform illumi-
nation conditions; however, disregard issues of nonuniform
brightness distributions may lead to over-segmentation and
under-segmentation problems [207]. A similar study [205]
was also conducted to detect voids in solder balls. Voids are
defined as cavities formed inside a solder ball due to the
amount of outgassing flux that gets entrapped in the solder
ball during reflow. Themain challenge that this study encoun-
tered is to make their algorithm able to differentiate between
voids and vias as both vias and voids have similar features.
Another challenge is to avoid considering void-like shapes
that are in the solder ball region, which may increase the false
alarm rates. As in the previous study the sample images are
acquired using X-ray AOI system. Template matching were
first applied to choose the perfect template candidate that can
be used to identify other solder ball regions. To exclude vias in
the detection, a method for segmenting vias and locating them
were conducted in this study. The voids are then located and
labelled using certain measures and features such gray level
value, area, and compactness factor and certain thresholds
were estimated from thesemeasures to perform the classifica-
tion process. Finally, to remove further any detected phantom
voids that were not eliminated by the previous operations due
to similarities with the actual voids, a circularity constraint
is imposed and is quantified using the compactness factor
and the principal axes ratio. However, the proposed method
did not show a solution if the actual voids in the final check
were not of circular shape (e.g. irregular or any complex
shape) [330]. Another study conducted by Van Veenhuizen
in [208] to inspect voids in solder balls as well; however,
deep learning model were used for the defect classification
process. Lu et al. in [280] constructed an optical inspection
system to measure LCD deformations for smartphones and
to locate the position with maximum deformation. The sys-
tem consisted of CCD, mirror adjusted with certain degree
and precision plate filled with equally sized holes. If there
a deformation exists, the image acquired of the holes via
the inclined mirror will look irregular. Otherwise, if there is
no deformation the holes will appear intact. Morphological
operation with the aid of thresholding were used to remove
the holes along the image edge and to repair the shape of
the other holes via dilation. A certain threshold was defined,
such that if the sizes of the deformed holes are larger than
the threshold then the LCD is considered deformed. However,
there was no discussion about the accuracy of their proposed
algorithm. Jiang et al. in [158] proposed simple image pro-
cessing techniques based on thresholding, segmentation, and
morphological operations to detect three types of solder joint
defects. First, to reduce the complexity of feature extraction
analysis, the background is removed using simple thresh-
olding to separate the solder joints from the background.
Segmentation and dilation operations were then performed
in order to highlight the solder joint regions. Two sets of
features were selected for the determination of normal or
defect solder joints: nine binary image-based features and
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seven gray value-based features. Pareto chart and box plots
for these features were then examined for selecting the best
features that could discriminate between the normal defect
types. Finally, rule-based classification was applied using
certain rule and thresholds to classify the defects according to
the type. Many advantages have been observed in their study
such as their methodology did not require special lighting or
special equipment to capture the PCB image. Furthermore,
their approach of background removing reduced the compu-
tational time for feature extraction. Nakagaki et al. in [127]
proposed a system for recognising circuit patterns and defect
severity of semiconductor wafers using thresholding and seg-
mentation techniques. The images were collected using SEM
and different patterns were observed such as protruding, hole
and flat patterns. Hole and flat patterns were identified using
thresholding techniques by calculating the average of pixels
in the binary image resulted. The algorithm for identifying
protruding patterns were selected according to the density
of the pattern. Thresholding were used again for identifying
dense protruding patterns, while segmentation with the aid of
binarization and edge detection were used to identify sparse
protruding patterns. The study also classified the defects of
the circuits in wafers according to the severity of the defect
into killer and non-killer defects. However, the algorithm of
the classification was not explained. The accuracy for the pat-
tern recognition in this study was 98.8%, while the accuracy
for defect severity evaluation was 95.6%. In a similar study
conducted by the same authors in [126], template matching
technique were used to analyse the defects. However, this
study resulted in minor improvement of accuracy as the accu-
racy recorded was 98.9%.

b: REGION EXTRACTION
Connected Component algorithm is a commonly used region
extraction technique which regard each pixel as a node in a
graph. Connected Component Labelling (CCL) can be used
after this step in defect inspection tasks to label the regions
found (e.g. defective regions) into certain classes. Chang et al.
in [44] applied CCL algorithm to identify the number of LED
dies from the binary image map. The algorithm were applied
after segmenting the die region pixels as 1s and non-die
region as 0s in a binary image that have the same size as
the original image using Hopfield neural network (HNN).
The CCL algorithm examine each die region pixel to give
it a label and compare this pixel to neighbor pixel so that
all neighbor die region pixels are considered as one die.
This procedure is repeated until all the dies are recognized.
Ooi et al. in [61] proposed a comprehensive data-mining pro-
cess using a Segmentation, Detection, and Cluster-Extraction
(SDC) algorithm to extract common defective wafer pat-
terns from the raw production test data. The proposed SDC
algorithm has been developed to extract meaningful clus-
ter features from a database of manufacturing test results
accurately and automatically. It can be implemented either
in an online or offline mode. CCL algorithm were used to
simply pairing adjacent 1s (that represent defective dies) and

0s (that represent normal dies) in a binary image. Finally,
morphological operations were used to remove the noisy
parts. This study has achieved a 90% accuracy rates in detec-
tion. Furthermore, SDC algorithm have helped in reducing
the false alarm rates by more than 90% when compared to
using segmentation algorithm alone. A similar study was
also conducted by Xie et al. in [96], where four defect
patterns of WMs were generated by connecting-components
and morphological operation approaches. Wijesinghe et al.
in [230] considered similar approach; however, in inspecting
liquid resin defects in LCDs. The acquired images from the
OCT are binarized and pixels were classified as defective
and non-defective according to certain threshold related to
the intensity. Next, CCL technique were used to define the
boundary of the defective regions and non-defective regions
by grouping each pixel’s class together. This technique is
repeated until all regions are classified. Using this approach
does not only evaluates the particular defective location; how-
ever, it defines the magnitude of each defect, and the number
of defects in a unit sample.

Sindagi and Srivastava in [281] used two feature extraction
approaches to highlight micro and macro defective features
of OLED panels and generate feature vector to be used as
an input for the classifier. Due to its important advantages
of computational efficiency and good texture discriminative
property, a modified version of Local binary patterns (LBP)
was considered as one of the approaches for feature extrac-
tion. In LBP algorithm, a 3 × 3 operator is used to compare
each central pixel with its eight neighbor pixels to generate a
binary code that can be converted to a decimal value. The
neighbors which have smaller pixel value than the central
pixel are set to logic 0, otherwise they will be set to logic 1.
Then the generated binary code resulted from the neighbor
pixel value can replace the central pixel value. In the modified
version of LBP, a uniformity measure is defined which is
the number of transitions between 0’s and 1’s in the LBP
code. Patterns having uniformity measure below a certain
threshold are labelled as uniform. During the evaluation of
this method, it was observed that it performed well on macro
defects like pit and film tear but failed to be effective on
micro defects like scratch and spot. Therefore, another fea-
ture extraction technique called local Inlier–Outlier Ratios
were integrated with LBP to be able to detect micro defects.
Lin et al. in [231] considered segmentation-based method
called wrapping to locate the bright spots defected features in
light guide plate of LCD panel. At the beginning, the entire
image was scanned to find a bright spot. The system then
scans along the upper part to the edge of the spot. The distance
between the lower and upper edges is calculated and a center
point were estimated by dividing the distance by two. The
center point measured represents the center of the bright spot.
A circle wrapping method is proposed in this case where
the scanning sequence follows a counter-clockwise rotation
from one corner to the opposite corner until all of the bright
spots have been marked. Certain measurements were then
applied to assess the quality of the bright spots. However,
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the classification procedure was not explicit. Furthermore,
there was no discussion for the computation time required no
of the accuracy achieved. Kubota et al. in [120] used Region
Growing to extract the shape feature of the micropipe wafer
defect. Their algorithm procedure starts by extracting points
of local minimum within a square region of pixels centred
at the pixel of question called neighborhood region. If the
local minimum point value is within predefined range, then
this point belongs to the specified region. Furthermore, they
extracted the surface curvature features of the defected. Then
they created a feature vector out of the extracted features and
fed it to a neural network for classification. Hsieh and Chen
in [63] used multiple feature extraction approaches based
on sub-region analysis for defining the possible defective
point of semiconductor wafers. Then they applied Minimum
Rectangle Area approach to combine the defective points into
clusters. However, they did not mention how to specify the
number of clusters or and how to use clustering features to
separate various types of defect patterns [67]. Hui and Pang
in [177] proposed a study to detect solder paste defects by first
constructing 3D profile to represent the solder paste block.
Segmentation technique were used to divide the block into
four edges and surface top area. The overall solder paste block
is also considered to be another region. A global classifier
was used to assess the quality of the overall block region
and declare if there is a defect or not. Two features were
used to feed this classifier which are volume and aspect ratio.
However, a solder paste block can still be defective if it
passes the global classifier. This is because a deformed solder
paste block can have the same volume and aspect ratio as the
normal one. Therefore, additional five local classifier were
established corresponding to the five regions segmented.
Same features were considered for the four edges which are
contour lines standard deviation and area of the edge, where
these features are fed to four classifiers. While top surface
height standard deviation and area of the top surface were
chosen as features for the top surface region classifier. Finally,
AND logic operation was implemented between the output
of local classifiers and global classifier, such that if a defect
is detected in one of them at least this means that the final
result will show a defect is detected. Despite of achieving a
100% detection rate in this study, they did not mention the
nature of the classifiers chosen. Furthermore, since a total
of six classifiers were chosen in this study, it was important
to mention the computational time needed for classification.
Liao et al. in [95] proposed morphology-based similarity
approach to generate simple and complex wafer sample
patterns with certain degrees of similarity, as compared to
the objective target WMs. Several morphological operations
were used in this process including dilation, erosion, open-
ing, closing, position shift, density change and rotation with
variations. The generated data were then sent to classifier to
specify the type of the patterned defect. Lin and Lue in [201]
proposed a fast positioning and inspections system for BGAs.
Edge detection and thresholding techniques were first applied
to find the boundary regions of the pads and holes, then using

the least-square circle approach the centers of the holes and
pads are found. The alignment shift is then tested by using
four sample images, where the centers of holes and pads for
these sample images are compared together. Certain thresh-
olds were used to decide if the variation resulting from the
comparison process are accepted or not. Unfortunately, this
study did not provide any information about the efficiency of
the proposed method in terms of the recognition accuracy and
computational time. Deng et al. in [225] investigated trans-
parent aesthetic defects of polymeric polarizers by simulating
them using a microscale plano-convex lens. They employed
gray morphology (dilation and erosion) approach to identify
the investigated defects and extract the features of them. The
features extracted were related to location, shape and size of
the defects. Despite of having an efficient detection system
with relatively low time of detection 1.6s and considering the
fact that detection of the simulated defects were consistent
with the experimental results. However, this study did not
consider an algorithm for defect classification. Furthermore,
they mentioned that irregular defects can be simulated by
using irregular shaped lenses; however, they did not ver-
ify their claim experimentally. Finally, they did not show
the necessity of using such a simulated technique. Authors
in [226], [229], conducted similar approaches; however, they
considered extremely slight transparent aesthetic defects.

c: EDGE DETECTION
One of the used segmentation techniques to extract used in
machine vision applications is edge detection. This technique
is very useful in applications that requires locating a feature,
alignment or for gauge inspection and measurements. As the
name says, edge detection is used to find boundaries in the
image and sharp edges, this can be performed by locating
the discontinuities in pixel intensities in the image using sev-
eral filters and operators such as Prewitt, Canny, and Sobel.
Pixels that are found on the boundary using this technique
are called edge pixels. An edge pixel can be described using
two parameters; edge strength (also called edge contrast)
which defines the minimum difference in the grayscale value
between the edge and background, and edge direction, which
can be defined by the angle of the edge direction [309].
Chang et al. in [288] proposed simple image processing
algorithm that relies on thresholding and edge detection to
classify touch panel defects. The distance measured between
the edges of the defects were considered as the criteria for
deciding the defect type. For instance, if the measured width
and length of the defect ranges from 7µm to 21µm and 1 mm
to 10 mm respectively, the defect is classified as crack defect.
The accuracy of the proposed algorithm ranged from 94-99%
depends on the defect type. However, the inspection time of
the algorithm was relatively long due to the high-resolution
images considered. In the two studies conducted by
Chao and Tsai in [262], [266], an improved anisotropic
diffusion technique was used to highlight defects in low
contrast surface images of glass substrates and back-
light module in LCD respectively. Anisotropic diffusion
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(also called Perona–Malik diffusion) is an image process-
ing technique that can reduce the noise in the image with
maintaining important features of it such as lines and
edges [331]. This quality of the technique makes it reliable
to deal with low contrast images to highlight the defects.
In [262], an adaptive smoothing process were integrated
with the original technique to further enhance the detection
process of defects in glass substrates based on the variation
of gradient in the image and by adjusting certain parameter
values. For defect classification, the lower and upper limit for
intensity variations were estimated by calculating the mean
and standard deviation of the gray values of the image. If the
gray level of a pixel falls within the control limits, the pixel
is classified as a faultless point. Otherwise, it is classified
as a defective one. The computation time of this study were
estimated to be 0.3 s; however, in [266] they referred to
same study time as 0.16s. Therefore, the real time was not
completely clear as there is a contradiction between both
information. In [266], the original technique were further
improved by integrating PSO to automatically determine the
best parameter values of the anisotropic diffusion function
instead of manually as in the previous study. This study was
conducted to detect low contrast backlight module defects
in LCD. The classification criteria of the defects in this study
was the same as the previous one. The computation time
were improved to be 0.06 s with lower number of iterations
compared with the previous study. Despite of the algorithm’s
ability to highlight low contrast defects, this algorithm only
performs well with non-textured surfaces, which means it is
not suitable to detect all kind of defects in LCD parts.

d: HOUGH TRANSFORM
Hough transform were also one of the techniques used for
feature extraction and defect detection applications, due to
the ability to detect various shapes (e.g. linear, circular and
elliptic shapes), given a parameterized description of the
shape. Edge detection operations are used as preprocessing
procedures before applying Hough transform. This technique
is very suitable for detecting wafer defects patterns in WBM
as they tend to follow a specific pattern. Since WBM are
considered binary images, Hough transform transforms the
binary image into a parameter space and tries to detect the
parameterized pattern through a voting process in which each
point votes for all the possible patterns passing through it.
Patterns with a higher number of votes indicate a higher prob-
ability of the occurrence of this pattern on the map. As long
as a parameterized model can be established for the spatial
pattern, this method can be adopted [59]. White et al. in [74]
used Hough transform based on linear parameterization to
detect defective dies patters on WBM. The patters detected
in this study were of linear shapes such as scratches and edge
patterns. Themain advantage of this study is its simplicity and
the ability of being fully automated. However, the study was
not useful in detecting commonly defective WBM patterns
such as ring patterns. Zhou et al. in [82] presented a control
chart technique to detect line and circular patterns through

statistical evaluation using Hough transform. This statistical
evaluation calculates the number of votes for the line and
circular defect maps. When the number of votes is larger
than the control limit, an alarm is raised indicating that a
pattern is detected. However, this method cannot distinguish
specific definite cluster patterns such as blob, bull’s eye, edge,
and ring. Chang et al. in [59] applied Hough transform to
detect WM defect patterns and were able to overcome the
limitations in previous studies by detecting all the patters that
were missed by them.

Despite of Hough transform’s ability of detecting various
defect patterns, this technique is considered insensitive to
gaps (missing pixels), which make it difficult to detect ran-
dom or mixed pattern defects in WMs since it may group
them as one pattern instead of multiple ones [74]. Hough
transforms performs poorly when it comes to low contrast
images, this may not be a problem in WMs since they are
generated using circuit probe techniques. However, it may
become serious problem in other cases that utilize illumi-
nation to highlight small defects such as Mura defects in
LCDs. Furthermore, Hough transform is considered costly
in terms of computational time [248]. Li and Tsai in [248]
proposed a revised version of Hough transform to highlight
defected Mura features in LCD such as spot, line, and region
Mura. This revised version can detect low-contrast defect
in 1D gray level image with uneven illumination. Unlike
conventional Hough transform that are insensitive to gaps
and needs sufficient number of points to detect line defect,
this method can accommodate distance tolerance. Any point
with the distance to the line falls within the tolerance will be
accumulated as a function of the distance to the line sought.
This approach allows the nonstationary points contribute to
the accumulator in the voting processing. Despite of the
proposed method’s ability to outperform the conventional
one; however, it is only capable of detecting nonstationary
straight-line and cannot consider nonstationary curved pro-
files and nonstationary linear/curved surfaces. Chang et al.
in [297] used Hough Transform as a preprocessing approach
to transform the circular shape of camera lens’ into a linear
shape before inspecting the defects. After the transformation
from the polar coordinate into Cartesian coordinates, seg-
mentation and morphological operations were conducted to
segment the defects. Five features were extracted from the
previous process which are the area of defective regions,
ratio of the width and height of defective regions, mean of
the gradient of defective regions and variance of the gra-
dient of defective regions. Where the feature vector con-
taining these five features is sent to classifier algorithm for
deciding the defect type. Jin et al. in [207] introduced a
reference-free path walking method to recognize the BGA
component locations and diagnose solder ball defects such
as oversize ball, undersize, ball bridging, misshapen ball,
missing ball, and ball offset. Solder balls were first segmented
using adaptive thresholding and median-based Otsu methods,
which determine local thresholds for individual cells, to over-
come nonuniform brightness. Then path-walking method
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(which is a modified Hough-transform approach) to locate
the orientation and position of the balls and extract the
defective features. Three features are then extracted using
these steps which are solder ball area, center of gravity and
compactness. Certain rules were then set according to the
extracted features to classify the defects. The main advan-
tage in this method that it does not need a reference image
which make it more practical in real inspection applica-
tion. Similar study was also conducted by the same authors
in [157] to inspect solder balls defects using course and
fine positioning technique. Unlike the previous study, this
method is model-based in which edge detection filter and
a circle fitting methods are employed to obtain the coarse
and fine locations of solder balls, respectively. The approx-
imate location of the component is then estimated using a
geometrical method and the fine location is calculated by
solving a least-squares problem. Finally, a pair of overlap-
ping ratios were used to classify solder ball defects based
on their quality and to inspect the accuracy of alignment.
Compared with the previous study, this method consumed
less computational time for same amount of BGA inspected.
However, the accuracy measures in this study was lower than
the previous one. A third similar study was conducted by the
same authors again to investigate the same defects in [136].
Segmentation and adaptive thresholding were applied in this
study as well to locate the solder balls; however, line-based-
clustering approach were added to coarsely determine the
BGA orientation and to classify the solder balls according
to their row and column locations in the BGA array for the
feature extraction process. Four features are then extracted
after performing the previous steps which are ball area,
ball centroid bias, roundness, and ball arrangement matrix.
Finally, certain rules are considered according to the feature
values in order to classify the defect types. The performed
approach outperformed the previous two methods with 100%
detection accuracy. However, the computational time con-
sumptionwas theworst among them all with 200ms to inspect
500 solder balls. Kuo et al. in [259] proposed an optical
inspection approach to highlight various kind of defects in
polarising films of LCDs such as dust, foreign object, scars
of hit, bubble and scratch defects. Various image processing
and feature extraction techniques were used for this purpose.
First, downsampling compression were performed to reduce
the size of the inspected images, then Laplace operator were
used to detect the edges of the defects. Thresholding and
Hough transform were finally used to differentiate the spot
defects, like dust, foreign objects, scars of hit and air bubbles
in the production process from the line defects, like scratches.
This study was able to speed up the inspection time by
using downsampling technique as they were able to reduce
the image size by 64 times. Furthermore, they achieved a
differentiation rate up to 98% in sorting spot defects from
line defects. However, this study did not propose a classi-
fication technique to classify each type of the investigated
defects

3) TEMPLATE MATCHING
Template matching is considered one of the simplest and
earliest pattern recognition techniques [332]. In AOI appli-
cations, template matching algorithm works by first iden-
tifying a reference template which usually represent the
non-defected case (also known as golden template) that can
be used for comparison. The selected template can be com-
pared to the target samples using various kind of correlation
functions. Template matching is preferable in investigating
systematic defects that have common patterns. The reason
behind that is the defect is always compared with a reference
template so if the defect occurs is not systematic, the compar-
ison with the reference template will fail and high false alarm
rates will occur. Template matching techniques can be used
in most application; however, it is not preferable in inspecting
WMdefects, since most of these defects are of mixed patterns
(systematic and random).

Normalized cross-correlation (NCC) function is one of
the most commonly used template matching functions,
it involves sliding the sub-image over the larger image pixel
by pixel and calculating normalized correlation to estimate
the degree of similarity between the sub-image and the
large image regions [137]. It has been proven to greatly
reduce the data storage and also reduces the sensitivity to
acquired images when compared with traditional image sub-
traction [333]. Zhong et al. in [48] proposed blob analy-
sation and template matching approach based on NCC to
inspect polycrystalline and fragmentary defects on LED
chips. Regional image segmentation was first performed
to locate the blob defect features and exclude them. NCC
approach were also used to locate LED chips at pixel accu-
racy. A certain threshold was used to classify the abnor-
mal LEDs from the normal ones. The study showed good
accuracy in detecting normal chips with zero false alarm
rate. However, a false alarm rate is presented in detecting
defective chips because of the NCC threshold value selected.
Despite of NCC simplicity, this method is time-consuming
since it is based on 2D summation and multiplication oper-
ations to compute the correlation, and is often combined
with the image pyramid method to compress image size to
alleviate the computation load of the correlation coefficient
method [45], [179]. Furthermore, this method is very sen-
sitive to illumination variations and image shifts, which can
increase false alarm rates [188]. In order to reduce the time
complexity of this method, Crispin and Rankov in [179]
proposed a modified NCC based template matching approach
using the generalized gray- model template for inspecting
component placement errors in PCBs such as missing, mis-
aligned or incorrectly rotated components. The gray-model
template can extract a vector of all edge positions of the
inspected component. By only searching the image at edge
locations, the number of NCC calculations that are needed
to be performed can be significantly reduced. Genetic algo-
rithm was also proposed to replace the sliding sub-image
process involved in NCC operation. Despite their efforts in
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reducing the computational time of the NCC approach, this
method did not mention the classification criteria for the
investigated errors (missing and misaligned component). In a
similar study, multi-template matching algorithm proposed
by Wu et al. in [184] that utilizes NCC for component place-
ment inspection on PCBs. The searching process has been
carried out by using the proposed accelerated particle swarm
optimization (AS- PSO) method to reduce the computational
time needed for detection. AS-PSO method were also com-
pared to GA for its ability to perform the same function.
However, experimental results have shown that AS-PSO was
able to reduce the computational time requiredmore thanGA.
The recognition rate achieved in this study reached 100%;
however, the testing was performed on resistors only and
did not involve other components. Similar approach was also
proposed in a similar study conducted by the same authors
in [185] with some modification to the PSO searching algo-
rithm. However, the same drawback of the previous study
was also found in this one. Furthermore, the processing time
in this study was much higher of that in the previous one.
Annaby et al. in [137] suggested an improved normalized
cross-correlation (INCC) algorithm to discover the location
of missing ICs. The suggested algorithm work in 1D instead
of 2D, which reduce the computation time and robust against
noise. Moreover, subtraction of the local mean in the INCC
provides better robustness than NCC since INCC tolerates
uniform brightness variations. Despite their algorithm’s abil-
ity of reducing the computational time compared with NCC,
their algorithm did not improve the accuracy of the NCC
approach. Wang et al. in [188] have also proposed a modified
version of NCC called partial information correlation coef-
ficient (PICC) to inspect surface defects such as particles,
foreign matters, and distorted components in PCBs, BGAs
and ICs. The PICC uses the technique of significant points
to calculate the correlation coefficient. The PICC algorithm
procedure has to set three variables: the size of the inspection
window, the gray level threshold, and the correlation thresh-
old. The most important difference between NCC and PICC,
is that the PICC firstly uses the gray level threshold to obtain
significant points in the inspection window and calculate only
the correlation coefficient of the selected significant pixel
points. Therefore, the inspection speed as well as the false
alarm rates can be significantly reduced. The second PICC
threshold is the correlation threshold. This value is used to
decide whether the image contains a defect. The selection
of the proper correlation threshold is also a key factor to
determine the algorithm is stable. Experimental results have
shown that this method achieved up to 100% detection rate
with only 0.3s, compared with 7s in NCC. However, if there
is a gap in the expected results, users must determine a new
set of variables for applying PICC procedure.

Pearson’s correlation coefficient (PCC) is also one of the
correlation functions used in template matching for com-
paring the reference image to the sample images. Unlike
NCC, PCC is considered more robust to variations con-
cerning brightness and noise. This method were used by

Timm and Barth in [20] to detect p-electrode defects in
LED dies; the study assumed that the template and sam-
ple images have the same height and width and they pro-
duced a formula based on that assumption with the aid
of the mean and standard deviation of the template and
sample image. Ibrahim and Al-attas in [156] proposed a
template matching and wavelet-based approach to inspect
traces defects in PCBs. Reference image was considered as
the perfect template for performing the comparison process.
Two-dimensional HAAR wavelet transform was applied on
both reference and sample images to perform the compar-
ison on the wavelet domain. To avoid unwanted noise due
to misalignment and uneven binarization, the comparison
between the reference and sample images in this study is
performed using subtraction process. The output of the image
subtraction operation can be one of the following three cases:
positive (potential defect), negative (potential defect), or zero
(non-defective). The generated positive and negative images
are binarized and then subjected to a noise elimination pro-
cedure. These images are lastly sent to XOR logic opera-
tion as a final classification to decide whether the images
represent a defect or not. Many limitations were found in
this study; first, the accuracy and the time requirement for
their inspection system were not discussed. Secondly, despite
of mentioning fourteen types of defects that their system
can detect, their classification scheme only classified these
defects using binary approach (defective and non-defective).
Lastly, their proposed system can be applied for small and
medium fabrication scale only, and cannot be implemented
for mass fabrication systems [334]. Cho and Park in [180]
proposed a similar method; however, for inspection of com-
ponent defects such as missing component, wrong compo-
nent, rotation, and tombstone. As in the previous study the
wavelet transform for the reference and sample images were
first performed. For the matching process between the ref-
erence template and sample image, the mean absolute dif-
ference and the mean square difference (MSE) are used to
modify each pixel and the whole image matching is per-
formed. To reduce the calculation time in matching, the area
of objects was segmented from the overall area of input
image. The segmentation step identifies the object area from
the compressed image. Their approach was compared to DCT
and results showed that their method outperformed DCT. The
main advantage of this study is its ability of reducing the
memory size, as they have reported that they used 7% only
of the original image for the inspection process. This could
be also considered a disadvantage as important features may
be lost by reducing the size of the image to this scale. Their
inspection accuracy was highest in detecting missing com-
ponent defects with a 96.7%. However, experimental results
have shown that variation of brightness and texture highly
affect the accuracy as well as the time consumption of the
algorithm. Unfortunately, the proposed method did not offer
a solution to mitigate these effects. Tsai and Huang in [200]
proposed a method, that can be used to investigate PCB and
IC dies defects, based on the comparison of the whole Fourier
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transformed image between the template and the sample
inspected images. It retains only the suspicious frequency
components in the Fourier domain of the test image and dis-
cards the common frequency components. After the anoma-
lies are detected and the background has been removed,
the inverse Fourier transform is then applied to restore the
sample image. A simple statistical control limit is finally used
as the adaptive threshold to segment the local defect for clas-
sification purposes. Unlike conventional template matching
approaches, this method is considered invariant to translation
and illumination variations in the sample images. Moreover,
the proposed approach can detect subtle defects as small
as 1-pixel wide. Liu et al. in [114], [115] proposed similar
approach to detect IC wafer defects. In their studies they
used 2D and 1D DWT respectively to extract a standard
template image form three defected images using comparison
and subtraction approaches. In [115], they showed that the
accuracy of detection does not differ between 1D and 2DWT,
while the computational time in 1D DWT is less than 2D.
The advantage of this method is its robustness to illumination.
However, the accuracy measures for these methods were not
mentioned in both studies. Rau and Wu in [192] proposed
template matching approach to inspect inner layer defects
of PCB board. First, a golden template of PCB board was
designed using CAD tools for comparison process. Before
the comparison takes place, the sample images were normal-
ized by applying geometric transformations such as rotation,
scaling and shifting. Then image subtraction is applied to
compare between sample images and the golden template.
The result of the subtraction process will result in either
missing pixels or excess pixels. Missing pixels corresponds
to defects such as pens, mouse bites, pinholes and missing
conductors while excess pixels correspond to shorts, spurs,
excess copper, and missing holes defects. In order to segment
these defects, a 4-connectivity logic operation is used to
determine the outer boundary of objects in a binary image.
Finally, classification algorithm called boundary state transi-
tion were proposed to classify the defects according to the
8 investigated defects. The proposed method is considered
simple to implement and computationally inexpensive; how-
ever, image subtraction algorithms are sensitive to variations
in illumination, lighting, color and complex transformations,
which may affect the detection accuracy. To investigate traces
and cosmetic defects in PCBs, Liao et al. in [194] used
template matching approach based on Hausdorff-distance.
The sample inspected images are compared with a reference
template image, that is generated from the compilation of
several good PCBs, for aligning them with each other. The
alignment process can also help in locating the defects and
extracting their features. Several techniques were used in
the alignment such as sobel edge detector and geometric
transformation as well as finding the minimal Hausdorff-
distance. It has been found that traces defects of PCB follow
specific patterns, therefore the features of these types of
defects are directly sent to the classifier for performing the
classification. However, cosmetic defects possess irregular

appearance, therefore for this type of defects color features
are also considered in the classification process. Compared
with other comparison approaches that are based on XOR
operation and logical rules, the proposed approach required
less time for extracting the features. Chang et al. in [193]
proposed two-phase approach to inspect PCB traces defects.
The first stage starts by storing sample images to form con-
cept space. Segmentation and morphological operations to
extract the features of the defect. The resulting images are
then compared with template image that represent the ideal
PCB image using rule-based method and XOR operation.
The second phase, which is called case based reasoning, is a
system that can be created with a small or limited amount
of experience and then developed incrementally by adding
more cases to the concept space as they become available.
The hybrid approach can avoid the main disadvantage of high
time consumption in template matching algorithm. Wu et al.
in [162] proposed template matching approach to investi-
gate solder bump defects. To do that a reference template
image was generated that represents the perfect non-defected
case. Using several image processing and feature extrac-
tion techniques such as thresholding, morphological opera-
tions, segmentation, and geometric calibration, four features
were extracted from template and sample images. These
four features are area of solder bump, the number of edge
pixel, the deviation from center, and the deformation ratio.
A comparison process were performed for the features of
the template image to that of the sample images. Given a
set of lower and upper limits rule, the defects are classified
according to the matching score between the template and
sample images. The proposed method achieved a high recog-
nition rate of 97.96% with a low false alarm rate of 2.61%.
However, in order to achieve these good results large number
of samples were required (10600 samples), which will sig-
nificantly increase the computational time. Hassanin et al. in
[181] investigated more general faults on PCB boards such as
missing letters, missing component and flux cutting. Speeded
Up Robust Feature Extraction (SURF), segmentation and
template matching approaches were used to highlight the
defects. However, their approach is very time consumingwith
a total time of 6.5211s for single image inspection, which
may prevent their study to be implemented in inline optical
inspection system. Owing to its robustness and its ability
of providing distinctive descriptors to the size and rotation
transform, Yuk et al. in [195] have also proposed SURF algo-
rithm for extracting PCB surface defects such as scratches
and improper etching. The features extracted represent infor-
mation such as the size, angles, coordinates, and color of the
defected region by digitalising the input image into a feature
vector that contains the previous information. Hessian matrix
is used in the algorithm for detecting interest points, which
represent the characteristics of the image and include useful
information for identification, including corner points. Haar
wavelet transform is also integrated with SURF to further
increase the robustness and decrease the computational time.
The extracted features are then sent to a classifier to decide
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the source of the defect. Lin et al. in [274] suggested a
modified pattern matching method to inspect andmeasure the
movement of anisotropic conductive particles. The study used
pattern setup and analysis to add a matrix of miscellaneous
gray scale to an adaptive one and run a miscellaneous algo-
rithm on part of the pattern block to improve the executive
efficacy of the system. Adaptive feature weight matrix is
also introduced to reduce error match. This research was
able to identify defective patterns with relatively short time
compared with conventional pattern matching techniques.
However, the number of samples used for testing and the
fact that no classification algorithm was considered are major
drawbacks in the study. Ye et al. in [176] inspected the IC
solder joint component based on an algorithm they call it
‘‘Adaptive template method’’. The algorithm start working
by a constructing a dictionary of qualified IC solder images.
Certain coefficient can be calculated using the dictionary
scheme. These coefficients can be used to construct adaptive
template assuming that an unqualified image is considered
as a combination of qualified template and noise. Here the
noise is considered to be the defect. Hue channel was used
as the feature to be considered in calculating the difference
between the sample images and the templates. Since relying
on the difference only may result in a misleading data, each
pixel has a specific weight that depends on the location of
the pixels where most likely a defect will occur. Various
experiments using several number of penalization functions
were used to evaluate the quality of the inspection. For clas-
sification, a threshold R is defined based on the hue chan-
nel difference between the template and sample image from
the dictionary, to identify whether a pixel in the difference
image is a potential solder joint defect pixel or not. However,
their approach classified solder joint defects as qualified and
unqualified without mentioning the defect type. Cai et al.
in [173] studied IC solder joints defects by comparing a good
solder template models (qualified) to other sample images
(qualified and unqualified) in a video frame. The inspection
algorithm used in this paper is Visual Background extraction
algorithm (ViBe), which is originally developed for moving
object detection. This method has the advantage of overcom-
ing the feature extraction and selection process, determining
of specific threshold for image analysis and debugging of
new products. Six templates were used instead of 20 as in
the original algorithm usage in object detection to decrease
the complexity. These templates were considered according
to the hue-channel values. Despite of achieving a 99% inspec-
tion accuracy when using large number of training samples,
this method does not explore prior knowledge and considered
complex to use. Moreover, their proposed approach assesses
the overall quality of the solder joint without specifying the
cause of defect. Wang et al. in [189] proposed template-
matching-based approach to evaluate drilling quality of
PCB holes. Their method is capable in detecting three types
of PCB defects: missing holes, incorrectly located holes, and
excessive holes. After applying preprocessing, rotation, and
scaling operations on the sample images to match then with

the reference templates, several features are calculated and
extracted such as the centers, radius, roundness, and other
diameters of the holes. The ratio and angle of rotation are
calculated between the testing and the reference images, then
they were modified until they became in the same direc-
tion and at the same angle. In this paper, the centers of the
holes are in the most upper left and most upper right as two
datum points for both testing and standard images. Template
matching can be then applied between reference and testing
images by using three key performance indicators as thresh-
olds which are average and variance for center holes, center
compensation, and unit circle scale. Their approach can
be effectively applied for high resolutions of 5µm and
above. However, many limitations have been observed in this
study. First, their approach is considered lengthy and com-
putationally expensive as the total inspection time requires
2.5 seconds. Second, the ratio between reference templates
and testing images is manually calculated, which makes their
approach not fully automated. Finally, by using the most
upper left and right points as datum points, it would cause
errors because if one or two of them are missing the result
will fail. Hsu and Shen in [147] proposed an approach based
on template matching to inspect IC marking. Their proposed
method starts by first detecting the angle of the chip and then
using the sum of absolute difference similarity measure to
match the template image and sample image. To reduce the
scanning time in the inspection process, the detection algo-
rithm was implemented on a multi-core embedded processor.
In addition to that, the operations of the algorithm were
performed in parallel using Single Instruction Multiple Data
instructions for Arm processors known as NEON. The time
needed for their algorithm to distinguish good from bad ICs
reached 31ms. Their proposed approach overcame some lim-
itations that were found in similar previous studies in [145],
[146] by detecting marking defects accurately when the IC
chips are placed with rotation angles, reduce the computa-
tional time and integrating the software and hardware into a
whole automatic inspection system. However, their method
classified the IC marking as good and bad, without highlight-
ing the cause of the error. Lee et al. in [279] used multiple
feature extraction methods to highlight TFT-LCD pad area
defects. The proposed method utilizes an adaptive discrete
Fourier transform (DFT)with the aid of a golden template that
is transformed using DFT as well to precisely remove wider
range of pattern frequencies. The main advantage of this
method that it works well on an image having both impedance
matching and fan-out areas as these areas either have a chang-
ing pattern period or non-repeating components. In the three
studies conducted by Acciani et al. in [143], [165], [166],
different feature extraction techniques were used to classify
five types of solder joint defects. They first used template
matching approach to highlight the extract the ROI in sample
images, which represent the solder joint and IC area for
inspection. Ten geometric and eight wavelet features were
extracted from the inspected area andwere combined together
to construct one feature vector. The obtained feature vector
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was then used as an input for a classification algorithm in
order to classify the defects according to the five types consid-
ered. A similar approach were used in a study conducted by
the same authors in [167]; however, in this study less features
were considered for the defect detection task. Three instead of
ten geometric features that represent area of the solder fillet,
mean gray level of the image and barycenter position of the
solder area were obtained in this study using thresholding
and segmentation techniques. Furthermore, wavelet features
were not considered here, which reduce the computational
time and allows the feature extraction process to be performed
automatically without the need of a human expert.

Template matching is still facing some limitations that
makes it difficult to use and increase false alarm rates, these
limitations include requirement of the reference and test
images to be exactly aligned and high influence of noise
and illumination settings. One of the major limitations of
template-matching for inspection is that an enormous num-
ber of templates must often be used, and this makes the
procedure computationally expensive [306]. To overcome
these limitations, Kim and Yoo in [117] proposed Feature
Point Matching approach to inspect defects in wafer images.
This method starts by studying the features that may differ
defective image than the reference images such as contour,
edges, and corner points. Therefore, a feature point has a
special property distinguishable from its neighbor points.
In this method the comparison is between features instead
of pixel-by-pixel comparison as in conventional template
matching approaches. In this study corner points were used as
feature points for comparison, as it has been found that wafer
images with defects results in additional corner points and
different gradient values compared to those in the reference
images. It has been proven the proposed method outper-
formed other template matching methods such as subtraction,
NP-subtraction, NCC and Eigenvalue. Furthermore, it is less
sensitive to alignment and noise. However, this method was
not able to locate defects and the processing time has to be
further improved in case online testing is required. Xie et al.
in [110], [112] proposed self-referencing method, in which
the dataset of images used for defect detection are also used
to create reference image that is used in template matching
method. Their algorithm has a learning ability of refining the
reference image in case a better match was found. This ability
does not require repeating the comparison steps between the
reference and sample images which reduce the computa-
tional time of the process. Furthermore, their algorithm is
not affected by image alignment and uneven illumination.
Despite of all mentioned, their study did not propose a cri-
terion for defect classification. Jian et al. in [284] overcame
common limitations in template matching techniques such
as misalignment, and surrounding illumination variations,
by proposing contour-based registration (CR) method to gen-
erate the template image. In this technique the contour is
considered main feature for alignment such that in the case
of rotation and translation, the contour geometry remains
unchanged. This algorithm was used to inspect mobile screen

glass defects. A subtraction and grayscale projection were
then conducted on acquired images and template to extract
defect. Using certain threshold, an internal classification pro-
cedure was performed to binary classify the sample images
into defected and non-defected samples. Finally, an improved
Fuzzy c-means clustering (IFCM) technique were proposed
to segment defects with fuzzy boundary contours. Despite
of the good sensitivity and specificity results achieved in
this study, the approach considered did not include final
classification process to classify the defects according to their
type. Furthermore, the inspection time of 1.6601s is con-
sidered relatively long for on-line inspection environment.
Also according to [285], it is insufficient for image distortion
rectifying to consider only rotations and shifts, and thus the
extraction after subtraction is not accurate. In a similar study
conducted by the same authors in [283], an AOI system
were proposed to inspect mobile screen glass defects such
as scratch, pit, dirt, and edge breakage. In order to avoid
the problem of higher dimensionality features that exists in
common feature extraction techniques, this study proposed a
technique based on multifractal spectrum for feature extrac-
tion. Using this technique, only two features can be extracted
named multifractal spectral width and spectrum subtraction,
which are considered for classifying the defect type using
classification algorithm. Liang et al. in [287] proposed AOI
system to detect touch panel defects. In their approach, they
first calculated the gray-values of the images and consid-
ered them as feature values. Then they established a dictio-
nary of defect-free features; however, since these features
can be redundant, sparsely reconstruction were proposed to
choose the optimum set of features. Orthogonal matching
pursuit (OMP) were then used to sparsely represent the test-
ing images based on the dictionary. Finally, sparsity ratio of
the sparse representation coefficients (between testing image
and template) is estimated to determine whether the testing
image is defective or not with the aid of certain thresh-
old. Experimental results showed that under various illu-
mination conditions, the proposed approach can efficiently
and quickly detect the touch screen defects for low res-
olution images and different defect types. However, their
approach used binary classification (defected, non-defected)
for inspection without specifying the defect type. Further-
more, their approach is considered computationally expen-
sive since their method is highly iterative. Tsai and Hsieh
in [29] proposed a template-matching-based algorithm that
can be used for detecting both PCB and LCD polarizer film
defects. To solve the alignment problems encountered in
template matching approaches, this study used fast image
alignment method called the expectation–maximization
(E–M) technique. This technique starts with edge detection to
extract edge points in the image. The E-step of the E–M pro-
cedure finds mutual edge points in both compared reference
template and sample inspected image by assigning weights
to individual edge points. The mutual edge points give larger
weights, while the foreign edge points in two images have
smaller weights. The M-step then calculates the geometric
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transformation parameters using the weighted edge points in
individual images. Finally, spiral search is carried out by a
predetermined lookup table to find the nearest point, where
the weight of each edge point is inversely proportional to the
neighboring distance. Unlike conventional templatematching
approaches such as NCC, this method does not require to
slide the window pixel by pixel throughout a search region
and no computation is involved in the look up table search
process, thus, this method is computationally very efficient.
Moreover, NCC is highly sensitive to rotation changes, which
increases more computation load to find the rotation angle.
The proposed E–M positioning method needs only to fix the
window of the test object at the same location as the template
in the image. However, in order to achieve high accuracy in
this approach, the object to be detected can only present a
minor geometric deviation with respect to the template [335].
Furthermore, this study only presented defect detection and
positioning approaches without considering defect classifi-
cation. For PCB defect inspection, Tsai and Yang in [198]
proposed a similarity measure approach based on the shape
of the pair-wise gray-level distribution to compare between a
reference image that represents a non-defected PCB and sam-
ple image. The gray level distribution between the compared
images is represented using 2D map called gray-level corre-
spondence map. In case of identical images were detected,
the gray- level distribution will be a diagonal line. On the
other hand, if the two compared images are different, the dis-
tribution will be a non- linear shape. The shape of gray-level
distribution is thenmeasured by the eigenvalues of the covari-
ance matrix of the data points in the gray-level correspon-
dence map. The smaller eigenvalue of the covariance matrix
is used as the similarity measure of two compared images.
It will be approximately zero if the two compared images are
identical, which represent that no defect has been detected.
Whereas it will be distinctly large if the two compared images
are different to some extent, which represent the case of
defected image. Experimental results showed that the dis-
crimination capability of the proposed similarity measure
is superior to the traditional NCC approach. However, this
method requires a noise-free environment and perfect align-
ment of the sample images [117]. Gaidhane et al. in [199]
also proposed a similarity approach to detect PCB surface
defects. As in the previous study, a reference template image
that represents the ideal PCB state is generated to assess
its similarity with the sample inspected images. Symmetric
matrix is then calculated using the companionmatrices of two
compared images. The rank of the symmetric matrix is used
as the classifier that can distinguish between defected sample
and non-defected one, such that if the rank of the matrix is
zero it means the sample image is non-defected, otherwise
it means a defect has been detected. Unlike the previous
study, this approach does not require feature extraction and
calculation of eigenvectors or eigenvalues, which can reduce
from the computational time needed for detection. Compared
with other similarity approaches such as NCC, this approach
achieved better recognition accuracy and lower false alarm

rates. However, this study only verified its effectiveness when
small rotations (2◦ to 6◦) and translations (2 to 10 pixels) of
the inspected samples are considered.

4) GRAY-LEVEL CO-OCCURRENCE MATRIX
Various statistical features can be extracted from (Gray-level
Co-occurrence Matrix) GLCM such as energy, entropy, con-
trast, variance, correlation, and inverse difference moment.
Considering large number of features for extraction will
increase the quality of the assessment; however, it will
increase the computational time in return [336], [337]. Li and
Huang in [75] used GLCM to extract eight features: entropy,
energy, contrast, local Homogeneity, mass, centroid, geo-
metric moments, and central moments along with seven
moment invariant features (translation, scaling and rotation)
for WBMs. These features were fed to classifier algorithm
to classify detected patterns. Yoon et al. in [223] used
GLCM along with segmentation and template matching to
detect polarizing film defects in TFT-LCD. Image magni-
fication were first used to inquire the images with the of
high-definition CCD sensor since the defects consideredwere
in the micro-scale. Image segmentation were then applied to
isolate the defective regions from the sample images. GLCM
were then used to extract four features from the defective
regions: actual defective region (ADR), center of gravity of
ADR, contrast and angular second moment. Finally, tem-
plate matching was used to compare these features with
non-defected samples and certain thresholds were used to
identify the defect types accordingly. A high inspection recall
and precision were achieved in this study (95% and 96%
respectively. However, their method in magnifying the image
during the image acquisition approach could result in high
inspection process time that may affect the capability of
this method for inline inspection. Yang et al. in [214] cal-
culated 11 features using GLCM to highlight five defects
in the TFT-array process. However, considering that this is
a large number of features to be extracted, this may affect
the inspection speed. Youesefian-Jazi et al. in [263] used
multiple feature extraction techniques to extract surface flaws
and scratch defects in TFT-LCD glass substrates. To reduce
unwanted noise from illumination, DWT were first used on
each glass substrate sub-image. After that two GLCMs were
calculated, where each one has 22 features to be extracted.
Due to the correlation between the extracted features and to
avoid redundancy, PCA were used for dimension reduction
before sending the extracted features as inputs to the clas-
sification procedure. Liu et al. in [212] used segmentation
and GLCM-based method to extract the defected features
(target and non-target defects) of GE process during TFT
array fabrication. Eight feature vectors were used for this
purpose to represent target and non-target defects. These
vectors were sent to a classification algorithm for further
consideration. However, during the experiments conducted in
this study, one of the defective images were misclassified as
a target defect, even though it was non-target defect. This can
be due to the few number of feature vectors considered or
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the whole feature extractionmethod needs to be reconsidered.
After separating the background textures from the foreground
defective features using NDF filter, Park and Kweon in [234]
considered extracting feature set that consists of geometri-
cal, intensity, statistical, and textural features to investigate
AMLOED defects. GLCM were used for this purpose and
33 total features were extracted in this step. PCA technique
were also used in this study during the experimental trials to
investigate its performance in reducing the dimensional space
of the sample images. Kuo et al. in [228] usedmultiple feature
extraction techniques in order to classify dent, foreign mate-
rial, bright spot and scratch defect of polarising films. They
started by transforming the defect image into the frequency
domain using Fourier transform combinedwith a Butterworth
high pass filter to highlight the defects details. Then they con-
verted the image back to the spatial domain and segmented
the defect regions using edge detection techniques with the
aid of Canny edge detector. Finally, homogeneity, contrast,
maximum gray level and eccentricity features were obtained
from GLCM matrix and used as input for classification
process. Hence, each feature of GLCM matrix is specially
obtained to highlight each type of the defect investigated. For
instance, homogeneity were used to highlight foreign mate-
rial defects, contrast for dent defects, maximum gray level
for bright spot defects and eccentricity for scratch defects.
Wang and Chen in [109] noticed that the WM defect pattern
features are rotation invariant because of the round shape of
thewafer’s image. Thismeans that the output of the features is
not affected by the rotation of the input image. Therefore, they
proposed three rotatable weight masks of the same size of the
circular area of WM to extract the defected features. They
named these masks polar masks, line masks and arc masks.
Rotation invariance is achieved by making several rotated
copies of eachmask and only themax feature value is retained
for each master mask. Polar masks aim to extract features of
concentric patterns, while line and arc masks are designed
to mainly deal with eccentric patterns such as scratches. For
polar mask the area of the mask is divided into several zones
using two methods: angle binning and circle binning as show
in Figure 35. Angle binning (shown in Figure 35(a)) divides
WM circle into equally spaced circular sectors, while circle
binning (shown in Figure 35(b)) draws concentric circles of
the WM, which separate the circle into annuli. The features
are extracted using these zones, for example edge defect
pattern appears mostly at interval [0.8R,R], so circle binning
at 0.8R could help detect ‘‘Edge’’ pattern.

5) COLOR ANALYSIS
To avoid long computational processing, most feature extrac-
tion techniques used gray-level analysis to analyse and extract
defective features from images. However, some defects
require to implement color analysis techniques in order to
capture the important features of them. Color analysis tech-
niques are performed with the aid of color channels such
as RGB, HSV, YIQ and CLEIUV which provide the color
representation of the picture. In general, four methods are

FIGURE 35. Binning of WM circle of raduis R.

usually used to perform color analysis for feature extraction
purposes [338]:

1) Analyzing each color channel individually by applying
gray-level methods (e.g. thresholding) on each color
channel. In this case each channel is considered inde-
pendent from the other such that only spatial interaction
is considered.

2) Transforming the image into different color space (e.g.
RGB to YIQ) such that features can be easily extracted
from the transformed space. The selection of the color
space is usually application dependent.

3) Combining spatial and spectral interaction between
channels such that gray-level is applied on each channel
while the pixel interactions between different channels
are also considered.

4) Using fully 3D models to analyse color textures. In this
case scenario, the spatial and spectral interactions are
simultaneously handled. However, some difficulties
arise in effectively representing, generalising, and dis-
criminating 3D data.

Chiou et al. in [203] considered inspecting BGA defects that
occur in gold-plating areas such as stain, scratch, solder-
mask, and pinhole. A neural network was first used to locate
the gold-plating areas by feeding the network with the RGB
information for each pixel. Beside the geometric variations
for the defective regions, the study showed that some defects
have unique color representation. For example, a scratch on
the gold-plating regions that expose the copper or nickel
underneath will change its color from golden to copper or
silver. Furthermore, a stain or oxidation on the gold-plating
regions will also change the color on the defected area.
Therefore, color information was used in this study during
the feature extraction process. Color segmentation, morpho-
logical operation and edge detection techniques were used for
extracting six types of features that represent color and geo-
metric information of the defect which are circularity, rough-
ness, longest/shortest distance ratio between each defect,
R-mean, and G-mean. These features were fed to another
neural network for specifying the defect type from four types
of defects considered. Nam et al. in [15] evaluated chromatic
defects of FPDs using high-dynamic-range (HDR) imaging.
First, the images are acquired by HDR imaging system.
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An image of flawless FPD was considered as a reference
for comparison. Color matching techniques were then used
by converting both reference image and test samples into
color maps and comparing the color variance for each pixel
using Euclidean distance. A certain threshold according to
the distance were considered in order to classify defected and
non-defected pixels. This study was one of few which consid-
ered color defects in FPDs and they achieved an accuracy up
to 95.61% in detecting colored defects. Tsai and Lin in [155]
developed two entropymeasures to detect gold-plated surface
defects in PCBs. One entropy measure uses two chromatic
features derived from the CIELUV color space to detect color
anomalies such as copper exposure, and the other measure
uses edge angles to detect structural defects such as rough-
ness on gold-plated surfaces. The entropy is computed by
sliding a neighborhood window on a pixel-by-pixel basis
throughout the entire gold finger regions in the sensor image.
A pixel defined in a small neighborhood window in a homo-
geneous gold-plated region will have small entropy value,
and one in any irregular region will yield a large entropy
value. Simple statistical process control principle was applied
to set up the threshold for distinguishing defective regions
from homogeneous regions in the resulting entropy image.
However, the recognition accuracy for the proposed algo-
rithm was not assessed in this study. Chang et al. in [113]
used color variance measures and GLCM parameters such
as contrast, entropy, homogeneity to extract semiconductor
wafer defective features. The color information is represented
by the average intensity values of the RGB components.
The feature vector represented by color information and
GLCM components is then sent to classification algorithm.
Xie et al. in [159] acquired the sample images of solder joint
and IC components using tiered-color illumination system,
after that the image is divided into twelve sub-regions as
shown in Figure 36. Each defect will correspond to different
color distributions and patters in one or more of the sub-
regions. To highlight the defective regions, a feature extrac-
tion process took place for the three red, green and blue
sub-images for each sample image, these features describe
the geometrical and color distribution of the selected regions
such as area, constant ratio etc. Ten features were selected
for each sub-mage (thirty in total for the three sub-images).
An improved Adaboost algorithm was used in this study to
select optimal and minimal number of features that carries as
much information as possible. Adaboost is supervised learn-
ing algorithm that is usually used for classification; however
it can be also used for feature selection as in this study.
After selecting the featured using Adaboost, the selected
features are sent to classifier to classify them according to
the defects considered. Saving computational time by using
Adaboost algorithm is considered a main advantage of this
study. A similar approach was also considered by Wu and
Zhang in [160]. In this study tiered-color illumination source
was used to acquire images and the IC solder joint were also
divided into several subregions which called shape features as
shown in Figure 37. Seven types of defects were considered

FIGURE 36. Twelve subregions of chip and solder components [159].

FIGURE 37. Subregions of IC chip and solder components [160].

in this study: surplus solder, lacking solder, lead lift, lead
bend, shift, bridge, and pseudo joint. Where each defect type
corresponds to different pattern and color distribution. Digital
features were then used to evaluate the solder quality of the
subregions by analyzing each sub-image component (red,
green, and blue). These digital features are expressed by the
color, area, mass center, and continuous pixels of each sub-
image. Logical features were then considered such that the
defective subregions that is associated with certain defect
type are marked with logic 1, and the non-defective regions
are marked with logic 0. Finally, the defects are classified
according to certain rules and thresholds, where an overall
recognition rate of 98.6% has been achieved. However, many
thresholds should be elaborately determined to achieve a
satisfactory classification. This causes the operator to spend
much time in selecting the appropriate thresholds [173]. Sim-
ilar illumination settings were used by Wu et al. in [171]
to inspect defects in two regions: component body (IC) and
solder pad. Seven color features and one template matching
feature were extracted from the acquired photo for each
region. The color features included the average intensity
value and percentage of highlights, while template matching
approach utilized a reference template to compare it with
sample images acquired using NCC function. It has been
found that these features are not independent and as a result
considering them all will add on the required computation
time for training. Feature selection methods based on infor-
mation gain were used to ignore the redundant features and
retain the important ones. The selected features were then
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fed to classification algorithm. The main advantage in this
method that only features that can contributes in the quality of
the classification process were selected, which can reduce the
computational time required. The same exact approach were
also considered by Wu et al. in [172]; however, in this study
genetic algorithm were used for the feature selection process.
Song et al. in [139] have also used genetic algorithm to
select optimized features for solder joint and electronic com-
ponent defects inspection. In their approach, they have also
used tiered-color illumination system to acquire the sample
images. The solder pad and component package regions were
divided into several subregions to extract the regional features
for 10 types of defects. Four types of color features were
also considered for each sub-region. The genetic algorithm
was used to select the optimal number of regional features.
Experimental results in this study showed that selection of
nine subregions led to best recognition results. The selected
features were then sent to classification algorithm to specify
the type of defect detected. Wu and Zhang in [163] proposed
a similar approach for inspecting seven types of solder joint
and IC component defects in PCB. The same tiered-color illu-
mination system that was used in the previous study was also
used in this one to acquire the images. Region, evaluation, and
color grads features were extracted from the acquired images.
The region features were defined by dividing the acquired
images into regions were the defect will mostly occur. Evalu-
ation features can be observed by measuring area, barycenter,
and defect distribution in the inspected region. Finally, color
grads features describe the color sequence (pattern) from one
side to others in a pointed region, it plays an important role
in the proposed method to inspect solder joints. According
to the values obtained from the evaluation features and the
color sequence obtained from the color grads features, simple
Boolean rules and conditional statement are used to classify
the defects into the seven defect types considered and one
more class to represent the good solder class. The proposed
method achieved an overall detection rate of 97.7% with
detection speed of 11s per PCB. However, since Boolean
rules were used for classification, their algorithm needs to
be reprogrammed if a new defect type has to be considered.
Mar in et al. [170] used several image enhancement and
feature extraction techniques for detecting solder joint defects
such as insufficient and excess solder joint. Hough transform
were first used to allocate the PCB in the image so that
the PCB does not need to be placed onto a precision X-Y
table. In this study DCT was used to normalize the images
to appear stable under different lighting conditions, which
is performed on the entire image to obtain all the frequency
components of the image and remove the coefficients of lower
frequency bands. The image is then transformed from the
RGB to YIQ color model, due to the advantages of this
model such as (1) processing the Y component only will
differ from unprocessed image in its appearance of brightness
and (2) most high frequency components of a color image
are in Y. Finally, segmentation and region filling techniques
were used to highlight the solder join component regions.

Despite the method’s efficiency in detecting the defects, this
study did not consider a classification algorithm to classify
the defects. In the study conducted by the same authors
in [161], they continued with the same approach; however,
with some enhancement of the feature extraction process and
with addition to a classification approach to overcome the
previous limitations. After image segmentation, DCT were
used again along with other approaches such as Gabor filter
and DWT to extract the features of solder joint defects and to
construct filter bank form by grouping the detail coefficients
together at each level.Mahalanobis Cosine Distance was used
as classification approach to compute the similarity measure
between two filter banks. In the comparison the study showed
that fusion of various feature extraction methods (DCT, DWT
and Gabor filter) led to better classification results. However,
the computational time of 20-30 s that takes to classify one
defect is considered extremely high, which makes it difficult
to implement this study in inline process inspection system.
Kuo et al. in [272] used several feature extraction techniques
to highlight black defects (e.g. particle and fibre) and white
defects (e.g. gel and resist coating) in color filters of LCD.
Since black and white defects have difference appearance in
the sample test image as shown in Figure 38, the method
of highlighting each defect type is different than the other.
Therefore, Otsu thresholding were first used to classify each
type of defect into white and black using a certain threshold.
Canny edge detection along with segmentation and morpho-
logical operation were used to highlight the defected region
areas. Four types of feature values were extracted using
these feature extraction methods which are area, aspect ratio,
squareness ratio and damage rate. Where these feature values
were used as an input to a neural network for further clas-
sification. In a similar study, Kuo et al. in [273] considered
investigating color filter defects as well; however, the defect
types considered as well as the feature extraction techniques
are slightly different. Multiple feature extraction techniques
were used to extract five key features: including defect gray
value, defect R component, defect G component, defect B
component, and aspect ratio. In order to do so, orthogonal
projection was first used to locate each pixel on the image.
An image comparison was then performed in order to select
a reference template based on the quality of the template.
Subtraction procedure were then applied between sample
and template to obtain new image with highlighted defects.

FIGURE 38. Black and white defects of color filters [272].
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Control limits were then used to separate the defected regions
from the non-defected. Finally, segmentation and morpho-
logical operations were implemented to extract the five key
features that will be used as an input to classifier for defect
classification process.

6) MODEL-BASED FEATURE EXTRACTION
Model-based feature extraction methods are based on the
construction of an image model that can be used to describe
a feature and synthesize it. The model parameters capture
the essential perceived qualities of feature [339]. Chen et al.
in [76] proposed an algorithm based on a growing wavelet
hidden Markov tree (gHMT) statistical model to extract WM
defect patterns. The hierarchical tree-based model, gHMT,
utilizes the growing and learning procedure to increase suc-
cessively the size of the wavelet tree for better feature extrac-
tion performance. Maximum likelihood classifier were then
used to classify the patterns detected into four classes: annu-
lus, half-annulus, band and half-ring. Jiang et al. in [178]
proposed a model approach to classify solder paste defects
based on learning the color biological feature sub-manifold.
The biologically inspired color feature (BICF) is applied
to represent the solder paste images by generating feature
maps and introduce a new sub-manifold learning method to
extract the intrinsic low-dimensional BICF manifold embed-
ded in an extrinsic high-dimensional ambient space. This
approach can simulate the optical inspection task performed
by human inspector by identifying poor from good quality
solders. The output for the BICF approach in then fed to
classifier for the classification process. However, this method
cannot analyse the details of the defects effectively [139].
Xie et al. in [31] proposed a model-based approach to detect
defective pixels in PCB sample images, the model conducted
in this study is called localized defects image model (LDIM).
In manual inspection task, workers focus on the local defects
rather than global defects by considering both regional color
deviation from the local dominant color and regional color
rapidly changing as possible defects. This model can mimic
the manual inspection process by considering two main fac-
tors: color deviation and color fluctuation. An ROI of size
100 - 1000 pixels is extracted from the original image so that
the LDIM model can be applied by identifying local differ-
ences in color between potential defects in the foreground
and the background. A specific threshold was used then to
classify each pixel as defective and non-defective. Second,
labelling and blob analysis are performed to characterize the
shape and size of the defects. In this step, the labelling of eight
connected components was calculated and a particular area
threshold value was applied to each of these images. Their
proposed method achieved 100% detection rate with zero
false alarm. It is also worth mentioning that their approach
outperformed template matching approaches by analyzing
color variations and color-related defects. Furthermore, it can
detect tiny defect embedded in a pad image that may dif-
fer only slightly from the surrounding region. However,
their approach cannot classify the PCB defect by type and

therefore it cannot be considered fully automated for inspec-
tion purposes. Lu et al. in [209] used model-based approach
and thermography to inspect solder ball defects such as miss-
ing balls in BGAs. Thermography can help in detecting the
heat changes as a result of the defect in the thermal images,
such that each defect has its own heat signature. Furthermore,
location and size of the defect can be easily determined using
this technique. The details of constructing the thermography
detection system for this study was already discussed in
earlier study conducted by the same authors in [319]. In order
to improve the signal-to-noise ratio, mathematical model
based on polynomial fit and differential absolute contrast
techniques were utilized to reconstruct the thermal images.
Three statistical feature vectors were then extracted from the
reconstructed images that represent the area of the solder ball,
the variance of the hot spots and temperature. The three vec-
tors are then sent for classification algorithm to classify the
defects. Despite the effectiveness of thermography to detect
certain types of defects, this method has relatively low spatial
resolution (typically 640 × 480 pixels), which makes it not
suitable for small defects detection that requires high resolu-
tion [340]. Jiang et al. in [238] proposed statistical models
to identify Mura defects in TFT-LCD in addition to their
sizes and locations. This study used luminance meter (light
sensitive device) instead of a CCD device to measure panel
surface brightness in a darkroom environment with the panel
switched to white background. LCD panel is divided into
144 areas. Five points are measured to obtain the luminance
data. Using the acquired data, Analysis of Variance (ANOVA)
were implemented to identify areas significantly different
from other areas in a panel. A certain threshold was defined
according to the luminance, such that if the value exceeds the
threshold, the sample is considered non-defective. Otherwise,
the sample is considered to have Mura defect and a further
step is required to identify the location and size of the defect.
Exponentially Weighted Moving Average (EWMA) control
chart concepts were used to detect the non-uniformity areas
in a panel and to identify the location of Mura defects along
with their sizes. Despite the capability and simplicity of
their method to identify the defect type, location, and size,
several limitations have been observed in their study. Their
proposed procedure was limited to 15-inch LCD panels as
produced by a local manufacturer. Furthermore, the method
used for acquiring data limited their ability to identify a
defective area partially overlapping two or more of the testing
samples. Finally, certain parameter that was important to
calculate EWMA, was estimated by trial and error, which
make their method not fully automated. Another statistical
approach that were used to accelerate defect detection process
called multivariate Hotelling T-squared statistics. Hong-Dar
Lin used this method extensively in his research articles
to highlight defects in LEDs [36], [38], LCDs [245], and
ceramic capacitor chips [291], [292]. After dividing the image
into several sub-images using image masks, feature vectors
can be obtained using wavelet analysis as in [36], [291],
[292], energy features as in [38] or color models as in [245].
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These feature vectors are used to construct what so called
T 2 distance or T 2 value. T 2 value can be regarded as a
distance value of amultivariate processing unit. The larger the
T 2 statistic value, the more distinctive the region is from the
normal area. Thus, the more easily the region can be judged
as defective. Owing to the blurriness and low contrast nature
of Mura defects in LCDs, Gan and Zhao in [219] proposed
a modified local binary fitting model (LBF) to highlight
the defected regions. LBF models are considered one of the
segmentation techniques that can solve the problem caused
by intensity inhomogeneity [341]. The proposed modified
LBF model made robust to initial contour and competent for
the extraction of defect boundaries. Furthermore, in order
to detect multiple defects with different brightness levels,
the study introduced a simple processing scheme to narrow
the brightness range of defects based on statistical threshold-
ing. Their method achieved a very high recognition rate along
with low false alarm rated comparedwith othermethod. How-
ever, this method is considered computational expensive and
less efficient compared with similar methods such as Markov
concurrent vision (MCV) and independent component analy-
sis (ICA). Bi et al. in [242] proposed a level set based method
for segmenting Mura defects with a new region-based active
contour model, which is an improvement on the Chan-Vese
model. Chan-Vese model is an active contour model which
uses region based information rather than the gradient of the
image. Thus, the objects whose boundaries are not defined
by gradients or have very smooth boundaries can be detected
and the position of the initial curve can be anywhere in the
image even not surrounding the objects [342]. In this study,
Gabor filter were first used to remove the background then the
proposedmodel was used for defect identification. The defect
detecting rate of this study was relatively high (up to 96%).
However, some drawbacks were observed on this study. For
instance, the proposed model is based on the assumption
that image intensities are statistically homogeneous in each
region and thus is not suitable for small Mura defects with
uneven backlight and cannot be applied in online display
inspection due to its very large search space and excessive
time consumption [219], [243]. Also, how to choose the
parameters of model was still not a standard of theoretical
knowledge as a guide [284]. Furthermore, the proposed study
did not include a classification algorithm to automatically
classify the defects. Yang et al. in [243] proposed similar
approach to investigate Mura defects in FPDs. The method
proposed consisted of two parts: an outlier-prejudging-based
image background construction (OPBC) algorithm which is
intended to quickly reduce the influence of image back-
grounds with even brightness and to coarsely estimate the
candidate regions of Mura defects. Then, region-gradient-
based level set (RGLS) algorithm is applied only to these can-
didate regions to segment the contours of the Mura defects.
The algorithms used in this study were compared to similar
algorithm such as the one used in [242] and it showed better
performance in terms of accuracy and false alarm values.
Moreover, the model proposed in [242] requires almost 500s

of computational time which is more than 40 times slower
compared with the algorithm used in this study. Lee and Yoo
in [237] proposed a complicated data fitting approach based
on regression to detect region-Mura defects with uneven
brightness in TFT-LCD. The study estimated the background
region of the sample image modified regression diagnostics,
then the background region was approximated by a low order
polynomial to generate a background surface. The reason
behind this procedure is to perform subtraction process for
the background from the original image. This subtraction can
remove the influence of non-uniform background and trans-
form the segmentation problem into a simple thresholding
one. The resulting image is then post-processed by median
filtering, morphological closing, and morphological opening
to remove noise and refine the segmentation result. Finally,
a certain threshold was used according to the gray-level inten-
sity, which can be adjusted according to the panel quality
to classify the defective samples. The experimental results
showed that the proposed method succeeded in detecting
the region-Mura defects. However, it is very computationally
intensive because the background surface must be estimated
recursively by eliminating one pixel at a time throughout the
entire inspection image [265]. Chen and Chang in [239] used
the same approach as the previous study; however, the order
of the polynomials used in the regression process was speci-
fied. The detection rate of Mura defects achieved in this study
was over 90.9% and the number of defects and the achieved
rate of defects on each panel may reach 100%. In another
similar study, Fan and Chuang in [247] proposedMura defect
detection algorithm based on regression diagnostics. The
sample images were converted to gray-level data, this pro-
cess was accelerated by dividing the image into several sub-
images. Gray-level data are then modelled using the linear
regression model. Prediction error sum of squares were then
estimated to filter out theMura defects. Image morphological
dilation techniques were used to identify defected neighbor
pixels. Finally, the differences of all the gray-level values
(including Mura and non- Mura pixels) between original and
estimated images are filtered by using a threshold and SPC
method to classify the defects. If the difference is greater
than the threshold, then the pixel is classified as Mura pixel.
This method has the advantage of performing the inspection
in relatively low processing time with low false alarm rates.
Despite of these advantages this method cannot detect defects
with sub-pixel accuracy [315]. Ngo et al. in [220] performed
background reconstruction to extract the features of different
mura defects in TFT-LCD. Several algorithms were used for
this purpose such as DCT, polynomial surface fitting and seg-
mentation. The usage of polynomial surface fitting and DCT
was according to the size ofmura defect such that if the size of
the mura defect is small (according to predefined threshold)
compared with the image, then polynomial surface fitting
is used for background reconstruction. Otherwise, DCT is
used for background reconstruction. Based on the sensitivity
of the human eye to Mura defect, the level for each Mura
candidate is quantified using the concept of just-noticeable
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difference, which is used to identify real Mura defects by
grading as either pass or fail. The proposed method can be
used to extract low-contrast Mura defects from nonuniform
background images. However, image background approaches
utilize all image data to reconstruct the image background,
without considering the influence of Mura defects. Hence,
the reconstruction quality of the image background is never
sufficiently accurate. Therefore, these methods can effec-
tively detect certain types of medium-sized Mura defects, but
cannot address small Mura defects [243]. Authors in [276],
[277] constructed AOI system to inspect the deformation of
the conductive micro-spherical particles in anisotropic con-
ductive films that contribute to the resistivity of the inter-
connection between substrate and chip. Handcrafted feature
models were created and used for this purpose with the
aid of limited number of collected samples. However, since
micro-spherical may vary in shape and size, the handcrafted
feature models may not be accurate method in detecting
the deformations [343]. Bai et al. in [186] proposed corner
point-based algorithm for SMT component placement and
positioning. Their approach used properties of the compo-
nents movement on the pick-up head to introduce two types
of model key points that indicate the shape of a model com-
ponent and extracted approximate corner points by using the
Harris corner detection algorithm and subpixel corner points.
Distance and shape feature matching methods to compute
the correspondences between the generated models and the
corners detected using Harris algorithm. After the corre-
sponding point pairs have been obtained, the coarse and fine
positioning problems are formulated as least squares error
problems. The time needed to execute the proposed algorithm
took between 13.7 – 16.8ms, depending on the component
type considered. Compared with other algorithms such as
HALCON and SM482, the proposed method did great job
in reducing the computational time. However, the variety
of SMT components and packages in the market makes the
proposed method, which used two components only in their
experiments, limited in application [344]. Chiu and Perng
in [168] proposed area features descriptive to classify the
solder joint defects (insufficient and excess solder), based
on the distinctive shapes acquired for defect type as shown
in Figure 39(a). In Figure 39(a) the defective features are
presented by the bright pixels. Using mathematical mod-
elling, the sample images are partitioned into four regions
as shown in Figure 39(b). Rule-based classification is then
applied using certain if-else statement according to the width
and length of the regions. For instance, if width of region III
is larger than width of region I, then insufficient solder defect
is detected. The proposed method achieved a recognition rate
of 95%with less computational time compared to studies that
used three tiered-color illumination settings. However, only
two types of solder joint defects were considered in this study.

7) PRINCIPLE COMPONENT ANALYSIS
Principle component analysis PCA is a statistical technique
that is used for extracting information from multi-variety

FIGURE 39. Method proposed in [168] to highlight defect features of
solder joints.

dataset [345]. It was first proposed in 1933 by Hotelling to
solve the problem of decorrelating the statistical dependency
between variables in multivariate statistical data derived from
exam scores. PCA reduces the dimensionality of the orig-
inal data by defining a set of new variables, the principal
components (PCs), which explain the maximum amount of
variability in the data [346]. There are multiple methods to
achieve the ideal number of PCs such as, broken-stick model,
Velicier’s partial correlation procedure, cross-validation, Bar-
lett’s test for equality of Eigenvalues, Kaiser’s criterion,
Cattell’s screen-test, and cumulative percentage of variance.
In terms of image data, PCA is used to find useful image
representation by finding a ‘‘better’’ set of basis images
so that in this new basis, the image coordinates (PCs) are
uncorrelated, i.e., they cannot be linearly predicted from each
other [347]. This is very useful in feature selection process
and for reducing the computational time of the algorithm.
However, due to the linear nature of PCA, the performance
is sometimes limited [269]. Therefore, most researchers have
used modified versions of PCA algorithm. Li et al. in [282]
used PCA with the aid of thresholding and morphological
operations to highlight five types of defects in mobile cover
glass. The morphological operations using thresholding and
blob analysis is important step for detection of connected
components which represent defective regions. Where each
blob is assigned a unique label to separate it from other blobs.
In this study PCA were used for dimensionality reduction
and to aid in classification process. In a process similar to
template matching, template set of labelled defective and
non-defective images were considered and the eigenvectors
of those templates were compared to the eigenvectors of
sample images for inspecting. According to this comparison
the defects is classified to the certain defect type (class). The
proposedmethod achieved a considerably low false alarm rate
of 6%. However, the extracted features are too primitive and
themeasured accuracy cannot satisfy the requirement of prac-
tical applications [285]. Chen and Perng in [235] investigated
textured surface defects of OLEDs and PLEDs using PCA
analysis. The gray-level image in this study is divided into
an ensemble of horizontal scan lines (row vectors). The input
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spatial domain image is then transformed into principal com-
ponent space so that the directional textures are well approx-
imated by first major components and their corresponding
weight vectors (named truncated component solution (TCS)).
TCS are determined by first normalising eigenvalues of each
image and then retain only those components whose nor-
malized eigenvalue are greater than one. Subtraction pro-
cess were then applied between TCS and original image to
reveal the defective features and blur all directional textures.
Finally, thresholding with the aid of SPC chart were applied
to classify the defects. The proposed has major advantages of
being insensitive to horizontal and vertical shifting, changes
in illumination, and image rotation. However, the method
proposed in this study is not suitable to deal with high reso-
lution image because the inherent complexity of PCA [348].
Furthermore, it is not suitable for detecting relatively large
defects since large defects seriously destroy the regularity
of texture. Tsai et al. in [267] proposed PCA-based method
called Integral Image for defect detection in non-textured and
homogeneously textured images such as LCD panel back-
light and solar wafers. Compared to conventional PCA, this
method can increase the computation speed of eigenvalues.
The method consists of a small neighborhood window that
slides over the inspected image and for each window the
regularity measure is then derived from the PCA. Two main
parameters were used in the algorithm that plays vital role in
the detection performance; control constant K which defines
threshold value for detection, and sliding window size for
the sample image. Since this paper deals with many surface
defects (e.g. solar wafers and backlight), the value of optimal
K may very according to the application; however, a value
of 3 has been demonstrated to perform well in most appli-
cations. A proper value of the window size has major role
in determining how accurate and efficient the algorithm is.
A small window size such as 25 × 25 or less detects only
partial defects or defect edges. Conversely, an excessively
large window size with respect to the defect size may smooth
the detected region and omit subtle defects or small-sized
defects. Therefore, in this study window sizes between
31× 31 and 61× 61 can well detect the presence of defects
for most of the defects considered. Compared with other
method such as Fourier transform, this method is considered
relatively fast as it needs only 0.032 s to process sample image
compared with 0.172 s in Fourier transform. Zervakis et al.
in [182] performed post-placement inspection of SMD
on PCBs. The developed approach involves the indirect mea-
surement of each lead displacement with respect to its ideal
position, centralized on its pad region. This displacement is
inferred from area measurements on the image data of the
lead region through a classification process. Sample images
of the proposed approach were a mixture of acquired images
via hardware optical inspection setup (CCD and illumination
devices) and Monte-Carlo simulated images. After defining
the ROIs and performing geometrical transformation, a four-
level Otsu thresholding is applied on each ROI, to segment
the lead images that are included in the examined ROI image.

This process will aid to extract twelve features for the lead
region that represent area and geometrical measurements of
the regions. To reduce the dimension of the feature vec-
tor that contains the twelve features, Karhunen-Loeve trans-
formation (similar to PCA) is used for this purpose. The
reduced features were finally sent to classification algorithm.
Goumas et al. in [183] proposed a similar approach that
further improves the positioning measurements of individual
leads by means of information fusion and multiple classifi-
cation. In this study, three sets of features are extracted from
each segmented lead image, which represent different char-
acteristics. The first set represents optical characteristics by
means of simple area measures that sustain the most desirable
image attributes. The second set reflects only the edge infor-
mation, whereas the third set pertains to features derived from
the one-dimensional projection profile of the lead image in
one direction. Liu et al in [269] proposed a nonlinear version
of PCA, called kernel PCA (KPCA) to investigate defects
during GE stage in TFT-LCD manufacturing. KPCA can
capture the nonlinear relationships between pixels, extract
more discriminating features, and reduce the dimensionality
of the input image. KPCA has shown to have better per-
formance than PCA in terms of feature extraction in other
applications such as in face recognition [349]. In this study,
segmentation and KPCA were used to highlight the defective
areas in the pixel region of GE pattern. The feature vector
was then sent to an input to a classifier to further identify
the category of the highlighted defect. Despite of overcoming
the PCAmain disadvantage due to linear behaviour, KPCA is
considered computationally expensive since the kernel matrix
needs to be stored after the training, and as a test datum
arrives, a large number of dot-product calculations is needed
to obtain the projection of the test datum [268]. Liu et al.
in [268] proposed a powerful non-linearity dimensionality
reduction technique called locally linear embedding (LLE) to
deal with the large-input-dimensionality in the image dataset
of GE defects in TFT-LCD. After performing the segmen-
tation process to locate the defective regions in the image
samples, LLE can map the high-dimensional input data into
a single low-dimensional embedding coordinate system by
manifold learning. By LLE, the input dimensionality of the
classifier can be reduced substantially, therefore reducing the
complexity of the classifier. This method overcomes similar
non-linear dimensionality methods such as KPCA in terms of
the reduced computational time. Cai et al. in [174] proposed
a modified PCA technique to inspect IC solder joint defects
called Robust Principle Component Analysis (RPCA). Their
procedure starts by decomposing a set of qualified IC joints
images and tested samples of IC solder joints images into
low-rank component and an error component using RPCA.
Hence, the data used for RPCA is acquired from hue channel
of the image, since hue channel contains major informa-
tion for color. Then, a defect score (threshold) is defined
based on the appearance model and used to evaluate the
quality of IC solder joints. Location prior knowledge is also
used to enhance the defect score selection. Their proposed
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method showed similar results to ViBE algorithm (proposed
by the same authors in [173]) in the case of inspecting qual-
ified ICs. However, in the case of unqualified IC inspec-
tion the proposed method outperformed ViBE algorithm.
Despite of the previous observations, the proposed study
faced some limitations such high computational time which
can be partially solved by employing hardware acceleration
and parallel computing. Moreover, their approach classified
solder joints defects as qualified and unqualified without
using classification approach to specify the type of defect.
Lai et al. in [224] used RPCA algorithm as well for detecting
aesthetic polarizer defects with the aid of structured illumi-
nation. Their algorithm achieved up to 99% detection rate.
The algorithm was also capable of detecting other type of
defect that were not intended to be detected such as dust,
stains, and scratches. Despite of RPCA’s robust behaviour
to outliers [350], RPCA is considered a very complicated
mathematical model. According to Cai et al. in [175], there
is no report of using RPCA in real industrial applications.

Cen et al. in [254] used low-rank matrix reconstruction
technique, which is considered a similar method to RPCA,
along with segmentation to highlight surface defect features
in TFT-LCDpanel. In this algorithm, the textured background
of the sample image is considered the low-rank matrix, while
the foreground image with defect can be treated as sparse
matrix. The defective region in this study is considered tiny
compared with the whole image. However, if the defected
region is relatively large, this may be reflected to the back-
ground features and will affect the background reconstruction
method [351]. Furthermore, this method can only solve LCD
images with simple background [352].

Similar to PCA, Singular Value Decomposition (SVD) is
another linear method used to extract the significant feature
components of the image, which can be also used to calculate
PCs. This applies by considering the image as a matrix so
that eigenvectors of an image matrix (eigen-images) can be
obtained. Eigen-images are then used to calculate singular
values (which represent feature data of the image). Only the
relevant parts of the singular values need to be retained as
the compressed data for reconstructing the original images.
The local, detailed information can be truncated to elimi-
nate the redundancy of image compression [258]. Lu and
Tsai in [257], [258] investigated micro-defects such as pin-
hole, scratches, particles and fingerprints in TFT-LCD using
SVD. The singular values which represent the background
were selected. The image was then reconstructed without the
selected singular values in order to eliminate the effect of the
background and highlight the defective regions (anomalies)
in the foreground. SPC were used to set up the control lim-
its for distinguishing defects from the uniform region. This
method is suitable for detecting defects of highly periodic
textured surfaces; however, the variety of LCDmanufacturing
processes and the higher image resolutions of LCD prod-
ucts often lead to less periodical, more complicated textural
structures in sensed images [245]. Furthermore, the proposed
method is highly sensitive to texture direction and face

difficulties in separating faint and large defects such as Mura
from the texture background [242], [286]. Kim et al. in [99]
used Regularized Singular Value Decomposition (RSVD)
method, which is based on SVD, as a feature extrac-
tion approach to extract failure patterns of DRAM WBM.
The benefit of the proposed RSVD is to obtain binary
eigen-images from a binary matrix of WBM. Each resulted
eigen-image represents different defect pattern of the failed
chips of WBM, thus the matrix norm of the eigen-image is
equivalent to the contribution that the failure patterns of each
eigen-image make to WBM. Finally, the detected patterns
are classified using K-means clustering to specify the defect
type.

Another technique which is considered a generalization of
PCA called Independent Component Analysis (ICA) is con-
sidered in literature. ICA is a method of extraction of statisti-
cally independent signals (called sources) from observed lin-
ear mixtures, to generate simultaneously observed sequences
of data (de-mixing matrix) without any prior knowledge
of the mixing mechanisms. This method is widely used in
dealing with medical signals and telecommunication [246],
[353]. Tsai et al. in [265] investigated backlight module and
glass substrate small defects in low-contrast uniform surface
images. For this purpose, they proposed a constrained ICA
model with the aid of PSO algorithm to design an optimal
filter with the objective that the convolution filter will gen-
erate the most representative source intensity of the back-
ground surface without noise. Therefore, by sliding the filter
in the inspection image, all pixels in non-defected regions
will have approximately the same impulse responses, while
the pixels in defective regions have distinct responses in the
filtered image. Certain control limits were used to classify the
defective regions from the non-defected ones. Experimental
results from the backlight panels and LCD glass substrates
have shown that the proposed ICA-based filtering scheme can
effectively detect various small defects in low-contrast sur-
face images. However, the convolution filtering scheme can-
not work effectively for the detection of large-sized defects
such as gravity-Mura since the defective region is too large
to be confined in a limited filter window, and sliding a very
large filter window pixel by pixel in the image is computa-
tionally expensive [246]. Tsai and Lai in [354] used ICA to
highlight defected features in periodic complex patters such
as TFT-LCD panels and color filter. In this study, the sam-
ple images were scanned top-down direction by horizontal
scanning and was transformed into 1D image. The result-
ing 1D image was then divided into two segments of equal
length. ICA were then applied and de-mixing matrix of size
2 × 2 were obtained with the aid of probability density
function (PDF) and PSO algorithm to recover the translation
between the two divided segments. Finally, NCC template
matching were applied to compare between the divided seg-
ments and detect defects incase an abnormality was detected.
Due to the small size of the de-mixing matrix used, this
method is considered computationally efficient, which makes
on-line, real-time implementation of the proposed method for
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defect detection in a manufacturing process become possible.
A similar study were conducted by Lu and Tsai in [355] to
detect micro-defects in periodic surfaces such as TFT-LCD
panel and can also be implemented on the color filter defects
as in the previous study. An enhanced ICA algorithm was
also used in this study which was called FastICA. As in the
previous study, each 1D image segment that has no defects
is trained by the FastICA algorithm to obtain a de-mixing
matrix and independent components. The independent com-
ponents which show spiky profiles represent an edge of a
pattern. These components are sorted and preserved because
they are regarded as representing global pattern structures.
The de-mixing matrix is regenerated according to the cor-
responding independent components and applied to a new
test image to determine any anomalies in the background
pattern. This method has the advantage of being able to detect
defects by training one segmented image and it does not use
template matching techniques as in the previous study which
saves computational time. However, both studies have two
common drawbacks which are the loss of the size and shape
information, and sensitivity to the vertical shift [234]. Tseng
and Tsai in [246] used a modified version ICA to highlight
low-contrast Mura defects in LCDs. In this study the image
to be inspected is assumed to be a linear mixture of the
representative basis images. The basis images which have
the full size of the LCD image are given by the product of a
transformation matrix and a training data matrix that contains
defect-free images as the row vectors. PSO is then applied
to find the transformation matrix under the objective that the
basis images are both statistically independent and spatially
exclusive. To classify defected and non-defected samples,
a control limit where established according to distance mea-
surement such that if the measurements exceeds this limit
the sample is considered defective. Experimental results have
shown that the proposed method can effectively detect both
small-sized, low-contrast defects such as spot-Mura and line-
Mura, and large-sized defects without clear edges such as
the hardly detectable gravity-Mura. However, the proposed
method can only detect the presence of Mura defects in an
image. It cannot be directly used to identify the actual location
and shape of a Mura defect.

C. CLASSIFICATION
Classification is considered the last stage of the inspection
algorithm. In this stage the inspection algorithm uses the
extracted features as an input in order to produce a an output
of categorized classes. In terms of the nature of the output,
classification can be subdivided into binary classification and
multi-class classification. In binary classification, the outputs
are categorized into two groups (e.g. pass/fail, defect/non-
defect). In multi-class classification, the outputs are catego-
rized into more than two groups. Classification can be also
subdivided according to the algorithm used in this process
into rule-based classification and learning-based classifica-
tion (machine learning).

1) RULE-BASED CLASSIFICATION
As a simple and easy way to classify defective and
non-defective products, a lot of researchers used sim-
ple logic classifiers such as conditional statement (if-else)
and Boolean rules. Hence, these statements are considered
pre-programmed and has no ability to learn as the case in
machine learning tools that are discussed in section V-C2.
These classifiers are usually used after implementing a rel-
evant image processing technique to highlight the features
for analysis, therefore the accuracy of them is highly depen-
dent on the image processing tool for feature extraction.
A certain threshold is then used for the assessment process.
For instance, in template matching this threshold is called
the matching score. On the other hand, if thresholding and
segmentation techniques were used, then the threshold could
be the number of bright pixels. Human assessor can define a
threshold value for the previous thresholds such that if the
obtained value exceeds threshold value, an action must be
made (e.g. consider the sample defective).

Shankar and Zhong in [122] set up a series of five logic
rules based on the energy features of the sample images to
classify the wafer defects. Such that, if the energy features
of error image exceeds 1µm, this means the sample image
suggests a defect (rule 1). Further on, if the energy features
of the chip-out region is greater than energy features of
scratch, bridging, and metal lifting then the defect is caused
by chip-out (rule 2) and so until all the investigated defects
are classified. The previous study suggested a simple and less
computational time consuming algorithm. However, there
was no discussion about the accuracy rate of the classifica-
tion. Yeh et al. in [128] classified semiconductor wafer dies
defects such as particle contamination and scratch based on
conditional logic algorithm. The features are extracted using
a recent approach called wavelet transform modulus sum
(WTMS). A golden sub-image (which represent a defect free
sample) were also used for comparison with sample images.
The WTMS approach is modified in this paper to detect
abnormalities in each pixel of the sample image that may indi-
cate a possible defect. Various coefficients are investigated
(e.g. vertical wavelet coefficient and horizontal wavelet coef-
ficient), were these coefficients are called ‘‘wavelet energy’’.
The investigated object (wafer) preserve more energy than
background does. Furthermore, pixels on corners clustering
noisy spots or irregular edges maintain much more wavelet
energy than pixels on small portions of an object do. A ratio
between a pixel and its neighbor can describe the status of
this pixel. The ratio is treated as threshold, such that if it is
more than or equal to zero, the pixel is considered as a defect
otherwise the sample goes to another check which compares
the sample pixel with the golden sample pixel to see if they
belong to the same coordinate. If the comparison failed to
show that they belong to the same coordinate, the pixel is
considered a defect, otherwise it will be considered as defect-
free. Lim and Jeong in [261] proposed a rule-based inspec-
tion algorithm to classify fatal and non-fatal glass substrate
defects in TFT-LCD. The rules and thresholds considered
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are based on the information of defect position, size, and
gray-level. Despite of the low false alarm rate achieved in
this study; the overall accuracy is relatively low compared
with other studies. In Ye et al. [176], after using the adaptive
template method, they used a conditional statement using a
threshold to identify whether a pixel in the difference image
is a potential solder joint defect pixel or not. The threshold R
is defined based on the hue channel difference between the
template and sample image from the dictionary. Where R is
an empirical threshold in the context, which is not sensitive to
the inspection performance. Cai et al. in [173] classified the
hue channel value of an input pixel (sample) into qualified
or unqualified one by comparing it with the templates. If the
pixels of the samples are in the range of hue channel in any
of the defined templates, the sample is considered qualified
and vice versa. The threshold that is used for classifying the
defects is called defect degree.

Fuzzy Logic which is a form of multi-valued logic was
also one of the classification techniques used in literature.
Fuzzy logic is capable in handling the problem of blurred
uncertainty phenomenon that cannot be described by binary
logic (0s and 1s). Therefore, an appropriate value is taken
between 0 and 1 to represent the degree of one element
belonging to a set (called fuzzy set). A set of rules is used
to represent the fuzzy values based on if-then statements,
the process of converting an input value to a fuzzy value is
called fuzzification and is used in fuzzy logic controllers. Lin
in [83] noticed the fuzziness of WBM patterns classification,
as not all maps should belong to one pattern only. There-
fore, the study proposed new fuzzy variable of clustering
pattern (FVCP) by using fuzzy logic control. Where FVCP
represents a numerical value ranges from 0 to 5 according to
the five patterns considered in this study. Hence, the FVCP
can be a decimal number, for instance if the value of 4
represents bottom pattern and a value of 5 represents crescent
moon pattern, then an FVCP of 4.7 implies that the recog-
nized clustering pattern has 70% degree belonging to crescent
moon pattern and 30% degree belonging to bottom pattern.
Acciani et al. in [167] proposed two-level fuzzy-based clas-
sifier to classify solder joint defects. The first level contains
three fuzzy blocks that take each feature of the three extracted
features as an input and gives a human-friendly classes which
describe the defect. For the first two blocks that have area
of the solder fillet and mean gray level features as inputs,
the possible defects that can be detected from these features
were described in five classes as poor (insufficient solder),
acceptable poor, good, acceptable excessive and excessive.
While the output of third block, which has barycenter feature
as an input, results in three classes: badly-centred, medium
centred and centred. The second level performs the final
inspection task and the outcomes of this level are similar to
the first two blocks outcomes considered in level one. Com-
pared with a previous study conducted by the same authors
in [166] (that used neuro-fuzzy classifier), this method
reduces computational time as well as human intervention in
the feature extraction process. Furthermore, the recognition

accuracy in this study was improved compared with the pre-
vious one.

Statistical process control (SPC) charts were used as a
mean to visualize features extracted statistically and to per-
form rule-based classification as well. The x-axis on the
control chart can correspond to the location on the image and
the y-axis to the frequency of analysed feature value at that
location (e.g. number of pixels, intensity level etc.) [356].
Upper control limits (UCL) and lower control limits (LCL)
are established on the y-axis to aid the classification process,
such that if the feature value exceeds the limit an action
must be taken (e.g. consider a defect is detected). Many
factors contribute to the quality of this method such as the
window size considered on the x-axis and the range between
UCL and LCL [357]. Despite of this method simplicity, it is
necessary to manually determine if there is any abnormality
in the control charts and what kind of abnormality occurs.
Furthermore, it is easy to detect abnormalities beyond the
control limit, but difficult to do so within the control limit,
which is easily affected by the experience level of quality
control personnel [358].

2) MACHINE LEARNING CLASSIFIERS
Unlike rule-based classification approaches mentioned in the
previous section, machine learning provides the ability of
the algorithm to learn the correlation between inputs and
outputs which can be used to perform certain classification
and regression tasks. In manufacturing and optical inspec-
tion applications, supervised machine learning techniques are
mostly applied among the other categories [359]. Multi-layer
perceptron (MLP), convolutional neural network (CNN), sup-
port vector machines (SVM), decision trees and k-nearest
neighbor (k-NN) are all examples of supervised learning
algorithms. Unsupervised learning involves the process of
developing a model or function without predefining the out-
puts. This method is typically used for finding meaningful
patterns (e.g. WBM defect patterns) or classifications within
a large data set [360]. Clustering, adaptive resonance theory
network (ART), Hopfield neural network (HNN), Cellular
Neural Network, and self-organizing map (SOM) are all
examples of unsupervised learning algorithms.

Machine learning is considered very powerful tool in clas-
sifying the defects detected by the image data. However,
there are two major problems that must be considered before
applying machine learning algorithms to avoid classification
errors. These two problems are overfitting and data imbal-
ance. Unfortunately, these problems are very common in
defect inspection using machine learning techniques. Over-
fitting occurs when the classification performance is highly
dependent on the training data. Overfitting problems appear
when few samples are used for the training process, and it
could be a challenge for industries that do not have enough
image samples for the defects so they can train their machine
learning algorithm. The lack of training data problem can
be solved by generating more datasets using several tech-
niques such as bootstrapping and Generative Adversarial

183236 VOLUME 8, 2020



A. M. Abu Ebayyeh, A. Mousavi: Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods

Network (GAN). Furthermore, regularization techniques
such as L2 regularization and dropout are widely used among
neural networks and deep learning models to avoid overfit-
ting. On the other hand, data imbalance occurs when the train-
ing data for certain classes are more than others. This is very
common in optical inspection problems when certain defects
occur more than others in the data provided. Data imbalance
problem will make the classifier more biased by the data of
the dominant class, which in return affect the quality of the
classification. One way to solve the data imbalance problem
is to create or modify the algorithm to include a cost-sensitive
method. The other way is using data preprocessing techniques
such as sampling, in which either new samples are added,
or existing samples are removed from the original data. The
process of removing samples is known as under-sampling
and the process of adding new samples is known as over-
sampling [263]. Hence, GAN and Bootstrapping can be used
to solve the data imbalance problem as well.

a: NEAREST NEIGHBOR CLASSIFIER
Nearest neighbor algorithm also known as k-nearest neighbor
(k-NN) is a supervised machine learning algorithm, which
can be used for both classification and regression. In this
algorithm a k value must be selected, which represent the k
nearest data points (whose classes are already known) in the
feature space that are closest to the target point to be classi-
fied. For instance, if we want to classify an unknown point (?)
according to the two classes 4 and � as illustrated in the
feature space of Figure 40. If k is selected to be 1, the output
of the unknown data sample will be simply assigned to the
class of its nearest neighbor (in this case 4). While if k is
selected to be 3 the data sample will be labelled according
to the dominant class in the range of 3 nearest neighbors (in
this example it will be �). Generally speaking, the output
value for the predicted data sample is usually determined by
estimating the mean value of its k nearest neighbors [361].
Several advantages can be observed in using this classifier
of such as the ability to train large dataset with relatively
short time and the fact that information present in the training
instances is never lost (because the instances themselves
are stored explicitly). However, many disadvantages can be
found in this classifier as well, such as the cost of classifying
new targets can be high. This is because nearly all the compu-
tation takes place at classification time rather than when the
training process. A second disadvantage is that all the training
set are considered in the attempt of the classification process
instead of considering the relevant ones only, which require
large memory capabilities. Finally, this classifier is highly
biased by the value of k selected [362], [363]. k-NN algorithm
was not widely used in the research articles reviewed in this
paper. However, some articles such as in [12], [73], [91],
[116], [143], [153], [154], [171], [297] used k-NN to com-
pare its performance with the main classification algorithms
they used in their studies. Furthermore, [178] used nearest
neighbor algorithm mainly to classify solder paste defects
in PCBs based on the data provided by the BICF model.

FIGURE 40. Illustration of k-NN algorithm.

The proposed approach has achieved a recognition rate
of 97.5%. However, this method cannot analyse the details
of the defects effectively and considered computationally
expensive [139].

b: BAYESIAN CLASSIFIER
Naïve-Bayes classifier (simplified as Bayes or Bayesian clas-
sifier) is one of the simple machine learning algorithms that
is based on Naïve-Bayes theory as in equation 3

P (A|B) =
P (B|A) · P (A)

P (B)
(3)

where the probability of A can be obtained given that B has
occurred. In machine learning terms, B is the evidence and
A is the hypothesis. The assumption made for the algorithm
is that features are independent, in which the presence of
one feature does not affect the other. As the case in k-NN,
Bayesian classifier has limited usage among the reviewed
articles in this paper. Studies such as in [53], [101], [153],
[175], [196] compared Bayesian classifier to the main algo-
rithms they used in classification. Wu et al. in [171] used
Bayes classifier as binary first-stage classification approach
to filter the defected and non-defected PCB samples before
sending the non-defected results to an SVM multi-class clas-
sifier to specify the type of defect. Yuan et al. in [80] used
Bayes classifier as second stage classification after using
Support Vector Clustering (SVC) to locate random and sys-
tematic defects in WMs. Zervakis et al. in [182] performed
post-placement inspection of SMD on PCBs. After receiving
the reduced feature vector using PCA approach, the feature
vector is fed to Bayesian classifier which produces a classi-
fication of the lead shift to several classes. The performance
of the Bayesian classifier was compared with LVQ network
and experimental results have shown that Bayes classifier
without PCA derive the best estimates, in terms of their
proximity to the actual values. However, in terms of time
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requirements, LVQ classifier performed less time compared
with the Bayesian one. Unfortunately, the accuracy rates for
the classifiers were not mentioned in this study.

c: DECISION TREE CLASSIFIER
As its name indicates, a decision tree is a decision support
tool that uses a tree-like graph or model to describe relation-
ships among different variables and makes decisions [361].
Decision trees are considered one of the supervised learning
classifiers. They share some similarities with rule-based clas-
sification; however, they have the ability to learn by setting
cost-function-like measures such as information gain and
Gini impurity. Jiang et al. in [154] used decision tree classifier
to classify four types of golden finger defects in PCB. The
samples used in this study were generated using bootstrap
sampling techniques to overcome the lack of samples prob-
lem and minimize overfitting. The features extracted from
these samples were then fed to the decision tree classifier
for classification. Experimental results have shown that deci-
sion tree classifier was capable of classifying bootstrapped
sampling accurately with a recognition accuracy of 97.87%.
Moreover, it outperformed other classifiers such as minimum
distance and nearest neighbor classifiers. However, it has
been observed that decision tree classifier has a difficulty in
selecting the range for each defect type for each feature. Thus,
the tree classifier cannot be easily extended to different cases
in manufacturing. A preliminary analysis must be made for
the determination of each class range. In a similar study, Jiang
et al. in [153] combined decision tree with logistic regression
to classify four gold fingers defects in PCBs. Color features
of each defective region are represented by the RGB values
of all pixels and used as inputs for the logistic regression
tree classifier. Compared with other classifiers such as k-
NN, Bayesian and minimum distance classifiers, the pro-
posed regression tree classifier outperformed them all with
an accuracy of 89.33%. However, once the number of defect
types become large with many overlapped data points, where
to start and where to continue becomes an issue. Furthermore,
this study did not consider the seriousness of the defects and
multiple defects on one golden finger. Wang et al. in [67]
proposed hybrid algorithms that integrates fuzzy c-means
clustering scheme with hierarchical linkage to cluster defect
patterns and produce a feature vector that contain convexity
and eigenvalue ratio as feature values. The feature vector was
fed to a decision tree classifier that is used to classify the
detected patterns. However, the proposed scheme was not
robust to some dataset [70]. A similar approach was also con-
nducted by Wang in [68]. Xie et al. in [159] used the optimal
feature data set, that is selected using Adaboost algorithm,
as an input to classification and regression tree (CART) clas-
sifier to classify the solder joint and IC chip defects in PCB.
The classifier was used on each sub-region of the thirteen
sub-regions selected. The two-class classification problem
can be converted into multi-classification by increasing the
number of nodes in the tree such that all the defects are
classified to the correct class. This study achieved a total

recognition rate of 97.2%. Themain advantage of this method
is the ability of reducing the feature selected using Adaboost
algorithm and choosing simple classification criteria using
CART. Chen et al. in [294] also used CART to investigate
six major defects in color filter and micro-lens of CMOS.
Several features extraction techniques such as thresholding
and Canny edge detection were used to extract ten color,
shape, and statistical features. In order to generalize their
study to detect different defect types, the minor defects were
filtered out using similarity matching approach, such that if
an image cannot meet the similarity criteria for each feature,
this study classified it to another category. CART classifier
was then used to deal with the six major defects after exclud-
ing other defects. Despite of achieving an overall accuracy
of 94% and relatively low false alarm rate of 5%; however,
some defects such as black spots halo were detected with
low accuracy. Furthermore, the false alarm rates for black
spots halo, bubble and other defects were very high. A sim-
ilar study was conducted by the same authors in order to
investigate similar CMOS defects as well in [295]. This study
was intended to reduce the false alarm rates and increase
accuracy using data from a CMOS manufacturer in Taiwan.
The classifier of this study was chosen to be SVM classifier
without noticeable modifications to the feature extraction
techniques. Compared with the previous study this study
showed remarkable improvement in increasing the accuracy
and reducing the false alarm rates of classification.

C4.5 (which is one of the modified decision tree algorithm)
has achieved best accuracy classification results compared
to others for actual manufacturing data sets of WM pattern
defects in the study conducted by Chang et al. in [59]. In this
study the training process for the classifiers used artificially
generated defect data along with actual manufacturing data.
In this study, circular Hough transforms, linear Hough trans-
forms and zone ratio were used to identify bull’s eye, line, and
ring patterns respectively. Logitboost has achieved the best
classification accuracy in terms to the artificial manufacturing
data. Even though that this study achieved a considerably
accurate classification results; however, if two or more defect
clusters partially overlap, the proposed method was unable to
classify them accurately.

Ooi et al. in [53] investigated WM pattern defects using
a modified decision tree called ‘‘alternating decision tree’’
(ADTree) to overcome the main disadvantage of conven-
tional decision tree algorithm which is empty or null-leaf
phenomena. This phenomena occurs when there is a valid
path with no corresponding learning example, which results
in an unclassified instance. ADTree is considered a combina-
tion of boosting algorithm and decision tree which generates
classification rule that are relatively simpler and easier [364].
The boosting process combined with decision tree involves
training the weak classifiers of the decision tree, which are
reweighted according to the mistakes occurred in the clas-
sifier. In their approach, they have considered that the dies
in the wafer tend to have circular shape rather than square,
therefore they have used rotational moment invariants (RMI)
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method for feature extraction to feed the ADTree. They have
achieved classification accuracy of 95%. Even though that
their system was trained to recognize a limited set of defects
including bull’s eye, blob, line, edge, ring and hat. However,
the system could be trained to recognize new defect types by
specifying their geometry and simulating it. Piao et al. in [90]
proposed a decision tree ensemble-based WM failure pattern
recognition method based on the radon transform features.
The radon transform is the projection of image angle and
were used for feature extraction. Four features were extracted;
max, min, average and standard deviation of projections
from the radon transform and used to build the decision tree
ensemble. The classifier has the ability to classify the defect
according to eight failure patterns. Even though the accuracy
of the classifier achieved relatively good results for all the
selected patterns (90.5%); however, the proposed method
failed to efficiently recognize several pattern types, which
may indicate that using the four previously mentioned fea-
tures of projections are not enough to present the geometric
and spatial information of defects in WM. Kim et al. in [101]
proposed a generalized decision tree classifier to classify
dynamic-random access memory (DRAM) semiconductor
wafer based onWM. TheWM they used shows the severity of
defected chips on the wafer according to color code, then the
WM is binarized to formWBM. The uncertain features of the
WBM is then classified according to the generalized decision
tree approach according to shape patterns and location of
defects. Based on their proposed algorithm, they achieved an
average accuracy of 95.6%. Despite of the good results, their
study considered only four patterns, rather than considering
all possible patterns. Furthermore, the defect size of the pat-
tern was not an important factor in this study.

Another classification technique that is based on decision
tree called Random Forest is also used in literature for defects
classification tasks. A random forest is a set of the multiple
decision trees generated by bootstrap sampling, which can
be trained by bootstrap aggregation (bagging) and feature
bagging processes. The bagging causes each tree to be trained
with a part of the dataset randomly selected from the whole
training dataset. The bagging process has the effect of allow-
ing the system to avoid redundant tree training by decreasing
the correlation between the trained tress. The feature bagging
process is used to randomly select some parts among the input
features in every tree node split to avoid the repeated effects
and correlation that come from features having strong influ-
ence on the response variable during the training. A random
forest shows different performances along the way according
to how the features are quantified [234]. Park and Kweon
in [234] utilized RF algorithm to classify different defect
types of AMOLED. The input for the proposed classifier
were acquired from the features set obtained from GLCM
and NDF filtering processes. The classification accuracy for
this method ranged from 87% to 98% depending on the
defect type. However, their inspection speed could be affected
since four optical inspection systems were considered to
acquire the images instead of one. In the study conducted

by Kang et al. in [97], random forest was used for wafer
dies’ defect prediction before the assembly process takes
place. Four feature variables were studied to make the pre-
dictions which are: distance of the die from the wafer center,
previous final yield at the die position, wafer test fail rate
for the adjacent dies, and abnormalities of the WM pattern.
Their approach is promising in that accurate prediction of
die fails in the final test enables the yield to be managed
more effectively. The final test can be skipped for dies that
will almost certainly pass or fail, which leads to significant
saving in time and cost. However, some limitations were
found in this study such that some variables from the four
considered showed low importance in the prediction process,
which makes the algorithm to spend extra time cost with-
out effective results. Furthermore, the wafer fabrication data
were not available in this study in spite of their importance.
Random forest’s performance can be severely affected when
imbalanced dataset are being used, therefore, in the study
conducted by Yuk et al. in [195] to classify PCB defects,
random forest was used as intermediate classification pro-
cess to predict the probability for the input features to be
classified as a defect rather than giving the final decision for
classification. Weighted kernel density estimation (WKDE)
map was used to aid the random forest after calculating the
probability. KDE is a probability density estimation method
using a kernel function. In addition, it is a nonparametric
method that is even applicable to high-dimensional data.
A binary classification was applied based on a single continu-
ous WKDE value to examine whether a feature is a fault. The
features were classified by comparing the WKDE value with
a threshold (called the cut-off value). A feature was classified
as a fault if the WKDE function exceeds the cut-off value
and was classified as normal otherwise. Despite of achieving
relatively good classification accuracy (≈91%), ten samples
were only used for the training process which may lead to
overfitting. Moreover, further work needs to be conducted
to redefine the fault type when it is not specified, and an
appropriate detection method for each type of defect should
be studied.

d: SUPPORT VECTOR MACHINE
Support Vector Machines (SVMs) are a family of supervised
machine learning algorithms used for binary classification
problems [365]; however, it can be modified for multi-class
classification [366]. Its objective to find a hyperplane (also
known as kernel function) in two or higher dimensional prob-
lems to separate the two classes as shown in Figure 41(a).
If the two classes are non-separable, we can still look for
the hyperplane that maximize the margin between the classes
such that the misclassification error can be minimized as
shown in Figure 41(b) [367]. SVMs have been found to
be an excellent tool in terms of the computational time
requirement, high classification accuracy and stability. A key
feature of SVMs classification method is its ability to use
high-dimensional data without the need of feature selection
step to reduce the dimensionality of the data [368]. However,
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FIGURE 41. Optimal hyperplane that sperates the two classes.

SVM classifier is not very effective against data imbalance
problem because the error penalties for positive and negative
classes are the same. This will make the optimal separating
hyperplane move toward the smaller class. In other words,
if the positive class is smaller than the negative class, then
the hyperplane will move toward the positive class, which
will further result in numerous false negative errors [269].
Kuo et al. in [46] investigated two types of defects in the
light area and three types of defects in the electrode area of
LED chip using several SVM-based algorithms. Since SVM
is optimized for binary classification, a standalone SVMalgo-
rithm were used to classify light area defects into two defect
classes: breakdown and color aberration. However, to inves-
tigate the three defects in electrode area, a multi-class clas-
sification scheme must be applied. Therefore, a combination
of decision tree and SVM algorithms called DTSVM were
used for the multi-classification task. Baly and Hajj in [116]

suggested SVM classifier due to its ability for efficient clas-
sification of multi-modal, multivariate, and inseparable wafer
data points. Their proposed model applied multidimensional
hyperplanes for separating and classifying wafer data into
high-yield and low-yield classes. They evaluated the accu-
racy of their model along with other models such as partial
least squares (PLS), General Regression Network (GRN),
C4.5 and k-NN. The results of their experiments illustrate that
the SVMmodel outperforms all other models in term of clas-
sification accuracy. However, their classification approach
classified wafer defects as good or bad without specifying the
cause of defect. After generating WMs using morphological
operation (based real defective wafers data), Liao et al. in [95]
used SVM classifier to specify the type of the defect accord-
ing to the pattern generated. The experimental results showed
that the proposed method achieved an overall catching rate
of 95% with only 5% false-alarm rate. However, this study
faced difficulties in detecting some patterns such as donut and
repeated scratches, such that low catching rates of 72% and
73% were achieved respectively for detecting these patterns.
Kuo et al. in [296] used an algorithm called Retinex for
brightness correction and to identify the small-scale features
in micro multi-layer non-spherical lens module of CMOS.
This algorithm has color constancy as it has good treatment
effect on the influence of illumination. For this particular
application, Retinex can correct the halo formation resulted
from the light into multilayer lens module. Thresholding
and segmentation techniques were then used to extract four
features values which are area, aspect ratio, average gray level
and gray level difference. These feature values were then used
an input to multi-class SVM classifier to decide the defect
type. Despite of achieving a relatively high inspection accu-
racy of 95.83%, their proposed method took 15s to inspect
single image, which is considered a very long computational
time. Chang et al. in [297] have also used SVM classifier
to classify defects in camera lens module after acquiring
a feature vector containing five features that represent the
defects. The feature vector was used as an input to the SVM
classifier to detect six types of defects. Despite of achieving
high accuracy rate of 93.44%, some defects could not be
detected because of their narrow area and low-intensity con-
trast. Chao and Tong in [84] used multi-class SVM to classify
five wafer defect patterns. The intensity of the defects was
extracted using four feature vectors that were called cluster
index, angle variation, distance variation and average number
of defects per unit area. These parameters were used as input
for the multi-class SVM algorithm. The classification results
for wafer defect pattern recognition showed that the proposed
multi-class SVM achieved a more accurate recognition rate
than the radial-basis function (RBF) model. Xie et al. in [96]
proposed an SVM approach as well to detect four wafer
defect patterns. They showed that their proposed method is
rotation invariant and can work correctly in noisy images with
the variations of defect locations and angle. However, this
method directly generated the probability of failure according
to physical locations and did not explicitly separate clustered
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defects and random defects [369]. Li and Huang in [75]
proposed a hybrid approach combining the supervised SVM
classifier with the unsupervised SOM clustering for binary
bin defect pattern classification. The feature extracted from
the GLCM and moment invariant steps were used as inputs of
the SOMmodel. Seven and fourteen classes were tested to be
the output for the SOM model respectively, which represent
the defect patterns of the WBM. The fourteen-classes model
has the advantage of providing more detailed information to
the process engineer for specific consideration. One-against
all approach (which allow to reduce the multiclass problem to
a set of binary problems, enabling the basic SVM approach to
be used) were then integrated with the SOMmodel for multi-
class SVM classification. Their hybrid SOM-SVM approach
achieved an overall accuracy of over then 90%, it also showed
an outperformence when compared to other hybrid methods
such as SOM-BP. Furthermore, the study showed that using
hybrid SOM-SVM can reduce the computational time of
using standalone SVM classifier. Wu et al. in [171] used
two-stage classifier approach to classify five type of defects
that occur in the component body and solder pad regions
in PCB. Before sending the extracted features to the classi-
fiers, the features went through feature selection process to
select only the important ones for classification. Bayesian
binary classifier were considered as first stage of classifi-
cation to classify the sample images as defected and non-
defected. For second stage classification, the non-defective
results from the Bayesian classifier were fed to modified
SVMmodel that uses one-against-one formulti-class classifi-
cation. This approach achieved a 100% recognition rate, and
outperformed other classifiers such as decision tree and k-
NN. However, decision tree and k-NN achieved less com-
putational time than the proposed method. Vafeiadis et al.
in [196] considered SVM classifier in classifying glue defects
in electronic components attachment process in PCBs. The
pixels of ROI were used as the feature vector and PCA
technique were applied for the feature reduction and selection
process. The reduced features were then used as an input for
the SVM classifier for detecting the defect type. Different
kernels were used for the SVM classifier and were com-
pared together such as POLY and RBF kernels. Experimental
results showed that both kernels achieved similar accuracy
levels. Furthermore, the performance of SVMwere compared
to that of decision tree naive-Bayes, logistic regression, MLP
and gradient boosting (GB) classifiers, where results showed
an outperformance to SVM.However, the best achieved accu-
racy of 81.39% is still considered low compared to other
studies. Wu et al. in [218] integrated PSO with one class
SVM classifier PSO-OCSVM to classify mirco-defects of
TFT-LCD. The input of the classifier is fed by the extracted
features from the Fourier, Haar and PCA approaches.
The accuracy of their classification achieved were 91.7%.
Song et al. in [139] compared between three types of algo-
rithms SVM, MLP, and decision tree to classify ten types of
solder joint and component package defects. The features to
feed these algorithms were selected using genetic algorithm.

Experimental results have shown that SVM outperformed
all other algorithms with 94.9% classification accuracy, fol-
lowed by MLP with 94.6% and finally decision tree with
43.6% according to nine featural regions selected by the
genetic algorithm. Their method has achieved a relatively
short inspection time of 1.54ms. However, some limitations
were observed in this study. First, the components used for
defect type classification are limited to capacitor and resis-
tor. Second, only component images obtained using RGB
illumination are applicable to the defect type classification.
Yousefian-Jazi et al. in [263] used SVM to classify surface
flaws and scratches defects in TFT-LCD glass substrates. The
sample data were first balanced using a technique called Syn-
thetic Minority Over-sampling Technique (SMOTE), where
in this technique the minority classes are over-sampled by
creating ‘‘synthetic’’ instances in feature space rather than by
over-sampling with a replacement. The results of the SVM
classifier achieved an accuracy of 89.5% and outperformed
other classifiers such as MLP and CART that were compared
to. However, in the case of imbalanced data were used, MLP
outperformed all the other algorithms. Despite of the good
results achieved, this study only considered surface flaws and
scratches defects and did not consider other common glass
substrate defects such as air bubbles and particles, surface
roughness, surface wrapping and surface waviness. Given
the information that the constructed AOI system is capable
of detecting surface waviness defects. Furthermore, SMOTE
technique cannot solve the problem of the increasing num-
ber of unimportant training dataset [370]. Jian et al. [283]
have also encountered data imbalance problem in inspecting
mobile screen glass defects. For example, scratches and dirt
defects appear frequently, whereas pit and edge breakage
defects appear occasionally. The different probabilities cause
an imbalance in the numbers of defect examples, in which
scratches and dirt defects are viewed as the majority class and
pit and edge breakage defects are the minority class. To tackle
this problem, this study proposed a method called example
contribution (ECS) to re-sample the imbalanced defect data
and improve the prediction accuracy of the minority defect
examples. After extracting the two features and performing
ECS to resample the data, SVM classifier were used for
the classification process. Since multiple defect types were
considered, the binary SVM classifier were converted to a
multi-classification SVM using a one-against-one strategy.
The method achieved a high overall accuracy rate of 96.61%.
However, the computational inspection time cannot meet the
requirement of online inspection system with a total time
of 4.4268 s. Furthermore, the proposed method is incapable
of detecting the defect’s size [285]. Liu et al. in [269] encoun-
tered data imbalance problem during their study since target
defects during the GE stage in TFT-LCD fabrication occurs
more frequently than non-target defects. Therefore, they have
proposed an algorithm called the imbalanced SVM (ISVM)
that can overcome this problem, in addition to its ability
of multi-class classification (using one-against-one strategy)
since four type of defects were investigated in this study.
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The proposed classification algorithm achieved 96% accu-
racy of classification. However, the proposed study only
covered pixel region areas during the GE stage and did not
consider other regions.

Another classification algorithm that share a lot of simi-
larities with SVM called Support Vector Clustering (SVC).
SVC acts the same as SVM classifier; however in the in the
final step of this algorithm, the classifier tries to search for
an enclosed hypersphere instead of hyperplane in the feature
space to cover all data samples as tightly as possible [70].
Wang et al. in [70] used SVC classifier to identify and clas-
sify multiple zones, multiple scratches, multiple rings and
ring-zone mixed type pattern defects in WBM. To further
categorize the unclassified defect patterns from the SVC clas-
sifier, a decision tree approach where used for this purpose.
SVC were also used in the study conducted by Yuan et al.
in [80] to separate random defects from systematic defects
in WMs, which improve both classification accuracy and
computational accuracy for further classification of defect
patterns using Bayesian classifier. Despite the good results
that were achieved, the speed of the clustering significantly
depends on the number of defects and the number of clus-
ters. If a lot of clusters exist on the wafer, efficiency of the
proposed algorithm may be suffered from computationally
intensive simulation.

Some researchers considered one class classification tech-
nique based on Support Vector Data Description (SVDD)
for classifying FPD defects. Given a target set, SVDD is to
find an optimal hypersphere that can enclose all or most of
the target data. The obtained hypersphere boundary is the
decision boundary used to distinguish outliers from the target
data [271]. A main advantage of this techniques that it can
deal with the data imbalance problem as only the positive
data are needed for the training process. Liu et al. in [268]
used SVDD algorithm as a classifier for the previous advan-
tage to deal with imbalanced image dataset of GE defects
in TFT-LCD. The input for the classifier were acquired
after performing data reduction using LLE algorithm. Their
resulted in overall detection rate of 98%. However, when
faced with some data types, SVDD would suffer from two
critical problems: the overfitting problem due to outliers,
and the multi-cluster distribution problem. Both problems
would result in high false alarm rates [212]. Furthermore,
SVDD algorithm requires long computational time, which
could not meet the requirements of inline inspection sys-
tem. Therefore, most similar studies that dealt with SVDD
algorithm used a modified version of it to overcome the
previous problems. Liu et al. in [212] used modified SVDD
algorithm called Fuzzy-SVDD to detect GE defects during
TFT-array process in LCD manufacturing. Features vectors
that were extracted in the feature extraction step were sent to
the proposed algorithm for generating labels for the defects.
The proposed Fuzzy-SVDD has three main advantages that
makes it preferable than using conventional SVDD. First,
it is less sensitive to outliers and therefore the overfitting
problem can be solved. Secondly, the membership values of

the target data can be assigned in a higher-dimensional feature
space automatically. Lastly, the proposed method partitions
the whole target set into disjoint subsets by using a partition-
entropy-based kernel fuzzy c-means (KFCM) algorithm, and
then one Fuzzy-SVDD member is responsible for learning
a hypersphere to enclose one target subset. Thus, a Fuzzy-
SVDD ensemble containing several Fuzzy-SVDD members
is formed. By doing so, the multi-cluster distribution prob-
lem can be solved. Rule-based classification was then used
as a final decision-making step for the labelled defects
from Fuzzy-SVDD algorithm. A certain threshold were used
according to the number of defective pixels detected in the
labelling process to generate three classes: target defect,
non-target defect and misclassification. The proposed tar-
get defect identification system reached high identification
rate (up to 98.9%). The mean time between two defective
images capturing is around 8s with 3s time to inspect one
defective image, which in total considered a relatively long
time compared with similar studies. Moreover, without the
prior knowledge of the training data, it is difficult to define
the fuzzy membership function [371]. Liu et al. in [271]
proposed a modified version of SVDD called fast SVDD
(F-SVDD) to detect SD operation defects during TFT array
stage. Compared with traditional SVDD, F-SVDD can pro-
vide a much faster classification speed with close accuracy
because its testing complexity is independent of the num-
ber of training patterns. This method achieved a detection
accuracy of over 95% with a detection time of 7.8s com-
pared with 30.17mins in traditional SVDD. Despite their
remarkable achievement in reducing the detection speed, their
classification algorithm was binary (defected/non-defected).
They justified considering binary classification to avoid data
imbalance, as some of defects occur more frequent than oth-
ers and considering a multi classification scheme will affect
the accuracy of the classifier because of the data imbalance.
One more drawback that this study considered defects in
the pixel region of SD pattern, despite of the existing of
two more regions (source electrode and drain electrode).
Liu et al. in [270] used the exact same inspection approach in
the previous study as an experimental procedure to demon-
strate the capability of F-SVDD. In their study they claimed
that full inspection of LCDs can only be achieved using F-
SVDD. Furthermore, they have verified that conventional
SVDD cannot be used at all for LCD inspection purposes
due to the long computational time of the method. In a
similar study, Liu and Chen in [213] used another modified
SVDD algorithm called quasiconformal kernel SVDD (QK-
SVDD) to classify GE operation defects during TFT array
stage. The QK-SVDD can significantly improve generaliza-
tion performance of the traditional SVDD by introducing
the quasiconformal transformation into a predefined kernel.
In this study they obtained a detection accuracy of 96%
with 60ms detection time. They have also showed that their
algorithm’s accuracy outperformed the conventional SVDD
by 30%. However, the same drawbacks of the previous
studies apply in this one. Sindagi et al. in [281] proposed
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adaptive-SVDD (A-SVDD) algorithm based on SVDD to
classify OLED panel defects. A-SVDD classifier aims to
learn an incremental classifier based on the existing classifier
using an objective function similar to SVDD and can tackle
distributional change in OLED panel datasets. The feature
vector obtained from modified-LBP and Local Inlier–Outlier
Ratios feature extraction steps were used as an input for
the classifier. The algorithm were compared to other similar
techniques and showed an outperformance in terms of recog-
nition, true positive and false alarm rates. However, compared
with similar studies, the computation time of the proposed
method is relatively long.

For LCD defects, Deng et al. in [227] used Support Vector
Regression (SVR) to develop 3D measurement system for
detecting and measuring polarizer transparent microdefect.
SVR used the same principle of SVM; however, it is con-
sidered a regression model and not a classifier, therefore
the output of this model is a continuous value. A set of
tolerance (epsilon) is used around the separating hyperplane
in the case of regression. The inputs for their SVR model are
the image gray value and the physical depth of the defect
and output is the defect geometric size. The reason that a
regression model was used in this study that they are building
a 3D model of the defect which will result in a continuous
parameter (defect geometric size). Defects below a certain
size can disappear in the production process, and defects
above a certain size cannot automatically disappear. There-
fore, this size should be an interval range rather than an
accurate value. The 3D shape of the defect can be measured
indirectly by using the functional relationship between the
depth scale of the defect and the grayscale of image. Lin and
Jhuo in [232] used a modified SVR algorithm called Multiple
Kernel Support Vector Regression (MKSVR) to investigate
backlight module defects in LCDs. As the name suggests
this algorithm uses multiple kernel functions instead of one
as in conventional support vector algorithms. In this study,
the images of several backlight modules are converted into
luminance value and examined all at once using the MKSVR
algorithm. The number of kernel functions and the parameters
of the kernel functions are automatically determined in this
algorithm according to the data distribution characteristics of
the training samples. Unlike other learning algorithms such
as the neural network and the SVR (which treat all training
samples equally), this system is considered more robust and
provides more flexibility.

e: CLUSTERING
Clustering is considered one of the unsupervised machine
learning algorithms. Hence, it does not require training
set for performing classification problems. Hierarchical and
K-means clustering are one of the commonly used clustering
algorithms [372]. In optical inspection applications hierar-
chical clustering is suitable with small datasets. It creates
a hierarchy of clusters that can be represented in a tree
structure where the root of the tree consists of single cluster
that contains all the dataset and the leaves correspond to

individual dataset. Hierarchical clustering methods are either
agglomerative, in which the algorithm starts with the leaves
andmerge the clusters together, or divisive, in which the algo-
rithm starts with the root and gradually split the clusters. The
linkage criterion is the deciding factor of which hierarchical
clustering method should be used, which is a function of the
pairwise distances between observations. K-means clustering
defines a K number of points (also known as centroids)
that indicates the number of groups which is established
a priori by expert. These centroids are initialized randomly
within the dataset, in which the algorithm tries to assign the
K centroid to the nearest neighbor of datasets in order to
group the near datasets into one cluster. To calculate the
degree of homogeneity and heterogeneity, the K-means clus-
tering method employs the Euclidean distance as a measure
of the similarity between observations and groups. The heart
of this algorithm is the for-loop which keep updating the
centroids’ positions until an optimal position of the centroid
is reached [373]. K-means clustering were used in the study
conducted by Kuo et al. in [45] to classify the LED chip
regions into; pad area, luminous zone and background. The
average gray level of LED appearance structures serves as
the cluster center of the K-means clustering method, where
the number of clusters K is set to three (which corresponds
to the number of regions). Beside using Gaussian EM algo-
rithm to classify both linear patterns and elliptic patterns, and
spherical shell algorithm to classify ring patterns in WMs,
Wang et al. in [69] combined K-means and hierarchical
clustering techniques to identify the different defect patterns
when both convex and non-convex clusters simultaneously
occur on the wafer. The combination of the two clustering
techniques can overcome the problem of specifying the num-
ber of clusters to execute the algorithm.

Clustering algorithms can be also developed based on
probability models. The term model is often used to rep-
resent the type of restrictions and geometric properties of
the covariance matrices. Unlike previously mentioned clus-
tering techniques, model-based clustering algorithms tries
to optimize the fit between the data and models used for
clusters, where data are viewed as generated by a mixture
of probability distributions in which each component repre-
sents a different cluster [374]. Model-based clustering has
many advantages in classifying wafer defects over other
clustering approaches (that cluster aggregated local defects),
such as identifying defect clusters simultaneously and obtain-
ing spatial pattern information in the ICs yield model [81].
Hwang and Kuo in [77] used model-based clustering along
with a spatial nonhomogeneous Poisson process, the bivariate
normal distribution and the principal curve to classify WM
defects according to their defect generation mechanisms.
Their proposed algorithm was able to identify complicated
defect patterns with fewer parameters. Yuan et al. in [78], [79]
investigated amorphous/linear and curvilinear WM defect
patterns simultaneously, and modelled them using multivari-
ate normal distributions and PCs, respectively, extending the
traditional model-based clustering approach by considering
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the mixture of two different probability densities. However,
their approach is mainly based on simulated results and
lacks the capability to detect closed-ring shaped patterns that
have been widely observed in WM defects. Furthermore,
their approach is computationally intensive when the num-
ber of defect clusters is relatively large [81]. Yuan et al.
in [81] used clustering for multi-stage classification of spatial
defect patterns in WMs. First, they used k-NN to classify the
local defect from the global defects and for noise removal.
The local defects filtered from the previous step is then
grouped into different clusters using similarity-based cluster-
ing method, which is well-structured procedure based on a
simple total similarity objective function and is considered
a robust method in terms of its initialization, outliers and the
ability of detecting clusters with different shapes. Finally, pat-
tern identification along with fine tuning were then used for
each of the local defect clusters (e.g. linear, curvilinear) via
various model-based techniques. The proposed method for
classification were compared to the model-based clustering
approach used in [78] and it has been found that they were
able to detect more clusters for three chosen WM samples.
However, in [78] they were able to detect more clusters for
one of the samples. Despite of the good results achieved,
their proposed approach faced some limitation such as it
uses location information only to analyse defect clusters.
Furthermore, if two or more clusters are close to each other
or polarity overlap, the proposed algorithm will not be able
to accurately distinguish between them. Finally, the k-NN
noise removal approach may not perform well in some sit-
uation, as when multiple local defect clusters on the same
wafer have different defect densities. Nakata et al. in [102]
have also used multi-stage approach to identify failure in
WM patterns, identify the causes of the failure, and monitor
the failure recurrence. To identify failure in WM patterns,
they used K-means++, which is proven to be faster by
conventional K-means algorithm for clustering wafer pat-
terns. A pattern mining approach called FPGrowth were then
used to identify responsible devices of the failure patterns.
FPGrowth is an efficient algorithm for association rule min-
ing. It uses a data structure called frequent pattern tree (FP-
tree) to store compressed information about frequent patterns
[375]. Finally, a CNN were used to monitor recurrences of
failures. This study has used various methods to reduce the
computation time so that it can be applicable for practical
application.

A less commonly used clustering algorithm called
Dynamic Time Wrapping (DTW). DTW is frequently used
in speech recognition applications but can be also used for
different classification problems. DTW is able to find optimal
global alignment between sequences based on the Leven-
shtein distance (also called edit distance), it also provides an
overall real number that quantifies similarity. Furthermore,
DTW is able to correctly re-align one sequence with the
other, a process which highlights similarities that Euclidean
distance is unable to capture [376]. Jeong et al. in [73] used
DTW algorithm to detect anomaly defect patterns of WBM

and compared it with nearest neighbor classifier that is based
on Euclidean distance. First, they presented the spatial pattern
on the WBM using a spatial correlogram, where a spatial
correlogram represents the correlation between values of the
same variable at different locations. Spatial correlogram gives
more useful information for the monitoring of defect pat-
terns that appear on WMs because this can describe spatial
dependence, a phenomenon known as spatial autocorrelation.
Then they calculated the distance using DTW approach to
identify the different defect patterns. However, the proposed
approach did not show robustness to some defect patterns
such the rotation-variant defect patterns [96]. Furthermore,
it could not identify the geometric shape of the defect
pattern [377].

Another clustering techniques used to classify defect pat-
terns in WMs called density-based spatial clustering of appli-
cations with noise (DBSCAN). In this algorithm, the density
associated with certain data point is obtained by measuring
the number of neighbor points along predefined radius, where
neighbor points with a density above a specific threshold are
considered as clusters. DBSCAN have several advantages
such as detecting clusters of arbitrary shapes and patterns
and the ability of detecting clusters without specifying the
number of clusters in advance [378]. Jin et al. in [56] used
this algorithm to classify wafer defects, where the Cartesian
and polar coordinates of all defective regions and edge die
were extracted to be used for calculating DBSCAN param-
eters. These parameters are the radius of the neighborhood
points and the minimum number of points in the neigh-
borhood. In this procedure, the outlier detection and defect
pattern detection can be done simultaneously. Taha et al.
in [103] proposed a clustering-based algorithm called Domi-
nant Defective Patterns Finder (DDPfinder) that clusters the
patterns of defective chips on wafers based on their spatial
dependence across WMs. The algorithm begins by select-
ing a number of chips randomly across a WM, where the
intensity of these chips is greatest at the edges and lowest
at the center. This is due to two reasons: (1) the yield in
the near-edge region is usually as much as 50% less than
the yield in the center region, and (2) the high yield loss
in the near-edge region can have a significant impact on
the overall wafer yield and fab profit. The chips selected
are then used to construct Voronoi regions with the chips
selected are the centroids of these regions. The region is
considered defected or non-defected based on how depen-
dent are the spatial patterns of their centroid points on the
dominant defective centroid points across WMs. By using
this technique, the overall time complexity for classifying
defects can be reduced significantly, because the centroid
point of each Voronoi region will be used as a representative
of all chips within the region. This will cause the size of the
processed data to be significantly reduced. This technique
was compared to other algorithms such as RGRN, MLP, and
RBF. It was found that DDPfinder outperformed all the other
mentioned algorithms in terms of reducing computation time
only.
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f: SUPERVISED NEURAL NETWORKS
Artificial Neural Networks (ANNs) can be classified
according to the data processing criteria as feed forward and
recurrent networks. Furthermore, ANNs can be classified
according to the necessity of a training set as supervised and
unsupervised networks [379].

One of the most commonly used supervised ANNs
are Multilayer perceptron (MLP) networks (also known
as back-propagation neural network BPNN), they are also
considered as feed-forward networks. The development of
back-propagation learning algorithm for determining weights
and biases was the main reason behind the popularity of these
networks among researchers. The basic building block of
this type of networks is called Perceptron. The perceptron
takes one or more inputs that go through specific activation
function in a neuron to produce an output, for example the
perceptron in Figure 42 has n inputs that goes inside a neuron
and produces an output y.1 Rosenblatt proposed simple yet
effective rules to compute the output by introducing weights;
weights are real numbers the describe the importance of each
input to the system, in which the input with less importance
will be penalized by multiplying it with low or in some cases
zero weight, on the other hand the inputs that have high
influence on the system will be rewarded by multiplying
them with relatively high weights. Activation function (e.g.
sigmoid function, tanh, or ReLU) is used to add non-linearity
to the process and help in decision making, applying the
activation function takes place after multiplying the weights
with the inputs. As the name suggests, MLP is consisted
of multi-perceptron in order to deal with complex problem,
the general topology of this network is shown in Figure 43
which represent a 2-layer MLP (hence: the input layer is
not counted as a layer). The outputs of each layer from the
perceptron are fed to the next layer as inputs and so on
until final layer is reached, this process is called feedforward
process. In order for the MLP to work efficiently it has to
be trained, this can be performed by relying on the historical
data (training data) for the inputs and corresponding outputs.
Ideally, if the inputs from the historical data were fed to
the MLP, the same corresponding outputs from the historical
data have to be obtained. Therefore, a sort of comparison
process has to be established between the actual outputs of
the network and real outputs from the historical data to have
a sense of the error. This comparison can be made by using
cost function (e.g. MSE). After the cost function is defined,
the weights and biases of the MLP has to be updated until to
the cost function reaches a minimal value. In order to do so,
partial derivative is used to track the change of cost function
with respect to the weights and biases. The process of getting
the optimum weight that corresponds to minimal error is
called Gradient Descent. This step begins from the output
layer until the error is investigated at the input layer which

1When sigmoid activation function is used, the perceptron structure shown
in Figure 42 can be also used in Logistic Regression classifier which is the
simplest form of ANN

FIGURE 42. Perceptron structure.

FIGURE 43. MLP structure.

justify the name backpropagation for this process. MLPs are
usually described according to the number of neurons and
layers used. For example, a 3-5-4 MLP means that this is a
two-layer network that consists of three layers; input layer
with three inputs, hidden layer with five neurons and output
layer with four outputs. Another type of supervised neural
networks that is widely used among reviewed articles in this
paper called Learning Vector Quantization (LVQ). LVQ are
also formed using input, hidden and output layers; however,
the hidden layers of these networks are not fully connected to
the outputs, which can reduce the computation time. A mod-
ified versions of LVQ, namely, LVQ1 and LVQ2 were also
proposed by Kohonen in [380], which further reduce the
computation time and increase the stability of the learning
process. Kuo et al. in [45] used two MLPs to investigate
five defect types in LED chip. K-means clustering with the
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aid of NCC was first used to divide the area of the chip
into three regions: pad area, luminous zone, and background.
The reason behind this step is to classify the defected fea-
tures according the region. Otsu auto-thresholding method
were then used to highlight four features for each selected
region and the overall chip; these features are area, perimeter,
tightness, and defect rate. The extracted features were then
fed to the first MLP that is responsible to decide whether
the sample contain fragment chip defect are not. Another
15-10-5 MLP were used to classify the samples according
to the remaining four defect types considered. The total
percentage of defect recognition according to this method
was 97.83%. Chiou et al. in [203] used two MLPs as well in
their study to investigate the defect occur in the gold-plated
regions of BGAs. The first MLP (3-5-2) was used before
the feature extraction process take place to identify the
gold-plated pixels from other pixels. Three inputs were used
to feed this MLP which are R, G and B information for
each pixel. The output layer has two output units, i.e., gold-
plating pixel and non-gold-plating pixel. The second MLP
(6-7-5-7-4) was used after the features are extracted. Six
inputs were used in this network that represent the num-
ber of features extracted, and four outputs that represent
the number of defect types considered. The proposed study
achieved good classification accuracy results of 96%. How-
ever, it fails to distinguish a defect that is connected to
the non-gold-plating regions, because the pixels that make
up the defect have been classified as non-gold-plating pix-
els. Furthermore, the regions inspected, and the number of
defects considered in this study are limited. Lin in [36] used
two approaches to classify water-drop defects on LED chip
surfaces: wavelet-based multivariate statistical (WMS) and
MLP network called wavelet-based neural-network (WNN).
In WMS, wavelet features were used to obtain the Hotelling
T 2 value such that the distance between defective features
can be estimated. The T 2 value is then classified according to
upper and lower limits, such that if not in the range this means
a defect has been detected. WNN approach uses four wavelet
characteristics as the input values of MLP neural network
which has two neuron outputs that represent two classes:
in-control and out-of-control. The detection rates usingWMS
and WNN approaches were 92% and 95% with false alarm
rates of 5.8% and 7.5% respectively. However, these results
were contradicted by another study conducted by the same
author in [51] that used the same exact approach with differ-
ent results obtained. The detection rates for this study using
WMS and WNN approaches were 92.4% and 90.8% with
false alarm rates of 6.1% and 4.4% respectively. The reason
for this contradiction is not explicit; however, since the major
difference was in theWNN results, it could be due to different
sample images used in both studies for the training process.
In a similar approach, Chiu and Lin in [245] investigated
blemish defects in LCD panels using T 2 hotelling approach
with the aid of ACO and BPNN. The T 2 hotelling value
were obtained using four color models, so that the distance
represents the color variations (dark and bright variations

in the grayscale). ACO algorithm is applied to detect the
abnormal spot blemishes in the distance diagram. Finally,
the BPNN were applied to classify the regions of slight color
variation blemishes based on the T 2 distance values. Su et al.
in [111] used three types of ANNs to inspect semiconductor
wafer post-sawing quality, which are BPNN, RBF and LVQ.
Where the RBF network can be considered similar to BPNN;
however, it only consists of one hidden layer and it lack of
connection weights between input layer and hidden layer.
They achieved optimum results in their study upon using
360 image mask size and 224 input nodes for all the neural
network used. The number of hidden layer nodes in the three
ANNs to achieve optimum results were; 20 in BPNN with
accuracy of 100%, 15 in RBF with accuracy of 90% and 18 in
LVQ with accuracy of 100%. It is clear in this study that
BPNN and LVQ showed an outperformance in the inspection
when compared to RBF. However, the proposed study is not
suitable for high variety of defects. In the study conducted by
Aghaeizadeh Zoroofi et al. in [119], BPNN have also showed
an outperformance in classifying IC wafer contamination
defects when compared to maximum likelihood and max-
imum distance classifiers. However, these algorithms were
used as binary classifiers and did not give many details
about the defect. Chen et al. in [264] used multiple ANNs
to classify TFT-LCD defects during the lithography process.
RBF, BPNN, LVQ1 and LVQ2 ANNs have been used and
comparison between their results were investigated. Due to
the difficulty in collecting sufficient defect data, this study
simulated various defect data to fit enough numbers for mod-
elling. Special considerations regarding using masks for the
sample images have been made, such that the ROI does not
take many inputs from the neural network and in the same
time make it big enough so that the accuracy is not affected.
Experimental results showed that LVQ2 had the best accuracy
results with an accuracy of 97%, while RBF performed the
worst with an accuracy of 87%. Despite the good results they
have achieved, the proposed approach is inferior in terms of
system setup lead-time and flexibility to product complexity.
Sun et al. in [293] have also compared between the per-
formance of MLP and LVQ networks to classify four types
of thermal fuses defects. Four features were first extracted
using thresholding, segmentation, and morphological oper-
ations, which are mean grayscale value, variance, rang and
entropy. These features were used as inputs for both networks.
Experimental results have shown an outperformance of MLP
over LVQ in terms of accuracy. However, LVQ consumed
less computational time compared with MLP. Acciani et al.
in [143] proposed two neural networks: LVQ and MLP to
classify five types of solder joint defects. They have also
conducted experiments on k-NN classifier and compared the
performance between the three classifiers considered. The
input for these classifiers was the feature vector that contain
the geometric and wavelet features of the inspected area, and
the output consisted of five neurons in the ANN classifiers.
The results have proved that MLP classifier that fed with the
combined geometric and wavelet feature vector performed
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the best compared with LVQ and k-NN classifiers with a
recognition accuracy of 98.8%. However, many limitations
have been noted in this study, such as the number of images
used to train the classifiers is not the same for all the defect
types (e.g. 32 images for defect type 5 and 76 images for
defect type 3), this can cause imbalanced data and can affect
the validity of the recognition accuracy obtained. Further-
more, the defect types considered in this study was limited
compared with other similar studies. Another note that the
results obtained in this study were partially contradicted with
another study conducted by the same author in [165], which
obtained 99.5% accuracy for the same approach. However,
this contradiction is due to the fact that only a small number
of samples have been tested in the later study. A similar
approach was also proposed by the same authors in [166]
in terms of the defects considered and feature extraction
technique; however, in this study a neuro-fuzzy classifier was
used instead. Their hybrid classifier consisted of three MLP
networks and two modules based on fuzzy rules. Several
advantages were observed by using fuzzy-based classifier
such as low computational costs of the fuzzy systems that
could satisfy urgent time constraints in the in-line detection.
Kuo et al. in [228] used GLCM matrix as inputs to two
ANNs: BPNN and RBFNN to classify polarized film defects
into four types of defects. The accuracy of the classification
procedure is 98.9% for RBFNN and 97.3% for BPNN and the
processing time of one single image is 2.57 seconds. Huang
in [71] used four self-supervised MLP networks that operate
simultaneously with one hidden layer to detect clustered chip
defects of wafers and classify them to bad and good wafers.
The input of the network is fed from the output generated at
the end of preceding training cycle. The feedback connection
between the output and input layers were used to elucidate
the structure in the input data without a priori teaching.
Backpropagation with gradient descent concept were used
for the training purposes of the network. Lin in [83] pro-
posed BPNN integrated with ACO algorithm to predict the
wafer yield. ACO can be integrated with BPNN to look for
the optimal set of parameters (weights and biases), which
can reduce the time of training process. This will result
in ACO-BPNN. The input for this network is obtained from
the defect count, cluster index and FVCP. Yang et al. in
[214] proposed aBPNN to classify the five defects considered
in the TFT array process. The input for this network were
the eleven features extracted using the GLCM process, and
the output were the five classes considered according to the
number of defects. Thirty hidden layers were considered
along with bipolar sigmoid activation function. The defect
recognition rate of proposed system was estimated to be
83.3%. However, it is noted that when the defect type changes
or type of TFT array samples change, the proposed defect
classifier must be retrained in order to adapt to new defects
or sample, which is considered a limitation for the system.
Kuo et al. in [272] proposed a Tagushi based BPNN to
classify four types of color filter defects in LCD panels.
The combination of Tagushi and BPNN were utilized to

avoid a possible disadvantage of using BPNN alone such that
the global minimum cannot be obtained if learning cycles
are insufficient. Four feature values were used as an input
to the BPNN. The output consists of four neurons accord-
ing to the defect classes considered (fibre, particle, gel and
resisting coating). This study achieved an overall recognition
rate of 94%. In a similar study, Kuo et al. in [273] used
BPNN classifier to classify six types of color filter defects
and the results were compared to another classifier type
called minimum distance classifier (MDC). MDC classifier
calculates the distance between the unknown graphic type
and all training types and selects the shortest distance for
decision making. The five key features obtained from the
feature extraction step were used as inputs to both classifiers,
and the output was the six defect types considered. In this
study BPNN achieved an accuracy of 93.7%, while MDC
achieved 96.8%. Despite of the good results achieved; the
proposed method could not recognize defects in the case
of overlapping of different defects in the same position.
Li et al. [221] proposed anMLP with four inputs: width, ratio
of fringe, curvature of fringe and fringe size to classify the
Mura defects into three types. The number of outputs of the
MLP were four including the three defect types considered
and the normal (non-defected) case. Ko and Cho in [164]
proposed a combined approach of LVQ networks and fuzzy
rules to inspect solder joint defects in PCBs. Each inspected
image is divided into three sub-images and an LVQnetwork is
used for each sub-image. The objective of this approach is to
reduce the burden of the LVQ classifier when classifying the
complex solder joint patterns. The input data of each classifier
are the color intensities of each pattern as shown in the form
of three-color patterns obtained under the three-color circu-
lar illumination. To avoid any misclassification, fuzzy logic
scheme was integrated with the LVQ classifier. The classi-
fication rule is described in a linguistic way like a human’s,
rather than represented by precisely numerical quantities and
the classification task is performed by predefined rules. Sev-
eral advantages have been observed by using the proposed
techniques: one is that the combination of three discrimi-
nant boundary functions makes more complex boundaries
than the original LVQ algorithms. The other is that expert
knowledge can be reflected in the pre- defined fuzzy classi-
fication rule. Therefore, the classification boundaries can be
easily readjusted, by changing the fuzzy rule tables and mem-
bership functions. However, since the proposed approach
uses multiple algorithms and deals with three sub-mages for
each image, this can increase the computational time making
this method not suitable for rapid inspection applications.
Ong et al. in [169] proposed LVQ network to classify sol-
der joint defects. The input for the classifier were directly
obtained from the grayscale acquired images without fea-
ture extraction or preprocessing steps since special cam-
era setups were established to avoid these steps as shown
in Figure 26. They compared the recognition rate for the clas-
sifier according to the images acquired from different setups.
They have shown that their classifier performed the best
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when a combination of oblique and orthogonal setups was
used to acquire the images compared with only orthogonal
setup was used. However, when the sample images increase
to about 130 images for training, both setups performed
the same. Their classifier achieved a high recognition rate
(up to 100%) with no false alarm. However, their method
has faced various drawbacks. First, their system is very sen-
sitive to lightning variations, therefore the success of a vision
inspection system is very much dependent on the good design
and robustness of the light source system. Furthermore,
despite that feeding the LVQ without preprocessing or fea-
ture extraction can reduce a lot from the computational time
required; however, these steps are still necessary to alleviate
the effects of error arising from different sources of variation.
Adly et al. in [57] proposed a novel algorithm that combines a
general regression network-based (GRN) consensus learning
model with randomization technique to detect defective pat-
terns in semiconductor wafers, where the combination results
in randomized general regression network (RGRN). GRN
are single-pass associative memory feed-forward type ANNs
which use normalized Gaussian kernels in the hidden layer
as activation functions [381]. The randomization technique
was applied by implementing randomized bootstrap to the
original data. Randomized bootstrap technique creates ran-
dom new subset of data by sampling from the original dataset
(with replacement). This method of applying RGRN with
randomization technique were compared to other techniques
such as MLP and it showed an outperformance compared to
them with an average accuracy of 99.8%. Adly et al. in [88]
conducted the same previous approach; however, they pro-
posed a data reduction technique based on data partitioning
and clustering to simplify the overall algorithm. Voronoi Dia-
gram were used for the portioning of data, where it clusters
the whole vector space into smaller Voronoi regions. k-means
clustering is used to fetch the centroid of each Voronoi region
to be used as representative of all original vectors. By using
the centroids, the size of the data is reduced and there-
fore the computation time of the algorithm is also reduced.
Their overall accuracy using this technique were slightly
improved compared with the previous method, as they have
achieved an accuracy of 99.884%. RGRN algorithm were
used again in the study conducted by Tello et al. in [108];
however, they added a CNN model in order to identify and
classify both single and mixed defect patterns. This study
suggested using a splitter based on information gain concept
to classify single andmixed patterns separately. The proposed
approach achieved overall accuracy of 86.17%. Even though
the accuracy achieved were lower than the one conducted by
Adly et al.in [57], [88] that used similar methods; however,
these two studies considered single defect patterns only and
did not consider mixed defect patters as in this study.

g: UNSUPERVISED NEURAL NETWORKS
For the scope of this review, unsupervised neural networks
are mostly used for identifying defect patterns in WMs.
Recurrent networks are example of unsupervised learning

networks. They are called recurrent because inputs to the
neurons of these networks come from external input, as well
as from the internal neurons, consisting of both feed-forward
and feedback connections between layers and neurons. Hop-
field neural network (HNN), Self-organising map (SOM) and
adaptive resonance theory network (ART) are all examples of
recurrent neural networks [382]. HNN can be used as an asso-
ciative memory and can also help in optimization problems.
Chang et al. in [44] used two HNNs to investigate LED die
defects. The first one was called Contextual HNN and was
used to locate the dies in the sample sub-images. The number
of the input neurons for this networkwere equal to the number
of pixels for the sample sub-image. The network detecting
criteria must satisfy the fact that intensity distribution of
pixels in die region in the sample sub-image must be similar
to that of template image. Since the network is used to identify
the die locations, the output neurons of this network form
a die map of individual dies. Each neuron node represents
the state of the pixel digitally, such as if the pixel is located
within a die region the neuron state is 1 otherwise it will
be 0. Therefore, the die map represent a binary image that
has the same dimension as sample sub-images. The regions
that represent a die location are considered 1’s, and the ones
that are not considered regions are considered 0’s. The die
region are then identified using CCL algorithm. The second
HNN is called competitive HNN were used to classify the
die image into three classes; light emitting region, p-electrode
and background in an unsupervised approach. The number of
neurons of this network depends on the gray intensity values
and the number of classes. In competitive HNN, winner take
all (WTA) approach were applied. The WTA ensure that no
two neurons are categorized with two different classes and
also guarantees that all gray scales are classified. The die
defect inspection algorithm were then applied to compare
geometrical and heuristical defects against the selected tem-
plate. 10% thresholdmargin were used to compare the sample
sub-images with the template image. The method achieved
an accuracy of 95% in detecting defective dies. Chen and
Liu in [64] used a modified ART called ART1 to recognize
pattern wafer defects. Unlike other types of ANNs that are
less likely to learn new information without damaging what
was previously learnt, ART network has the advantage of not
forgetting after learning [379]. ART1 is considered an unsu-
pervised binary network that accepts binary inputs. In this
study, an unsupervised technique were selected as they found
it difficult to decide how many clusters of defect spatial pat-
tern to be selected, therefore the learning was accomplished
using input data alone. They also gave detailed explanation
behind the reason of choosing this algorithm as:
• If the characteristic of a new pattern is quite similar
to a previously stored pattern (vigilance test passed),
only a slight modification of the knowledge contained
in the old patterns will be executed. The characteristics
of the old and new patterns can be satisfied and the
old knowledge can be properly retained. Stability of the
system can be maintained.
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• If the characteristics of a new pattern are not similar to all
of the previously stored patterns (vigilance test failed),
new knowledge for the new pattern will be created. This
implies quick learning of a new pattern, or the so-called
plasticity.

The network was able to recognize both ring and scratch
defects using matching values. They compared the perfor-
mance of ART1 to SOM. They showed that ART1 outper-
formed SOM in the comparison. Even though, they did not
achieve high matching scores for the detected pattern; how-
ever, this study over comes others in predicting the possi-
ble defect patterns rather than assuming a pre-defined sce-
nario. Unlike the outcomes achieved in the previous study,
Di Palma et al. in [66] showed that ART1 is not adequate
due to AND logic usage, whereas SOM provide completely
satisfactory results including visually effective representation
of spatial failure probability of the pattern classes. However,
their method cannot separate ring patterns from the other
types of defect clusters [86]. Liu et al. in [65] implemented
the same approach in [64], in which they used ART1 to
detect the defect patterns in WBM. They were able to detect
more patterns than the previous study such as bull’s eye
pattern and they reached a recognition rate of 95%. How-
ever, the low number of WBM provided to them limited
their ability to identify further patterns. Choi et al. in [85]
conducted a study similar to what have been done in [64],
[65]. However, they proposed an advanced ART1 algorithm
called ‘‘multi-step ART1’’, where it sequentially uses the
modules to classify each pattern separately, instead of training
all patterns at once. This algorithm has a specific learning
procedure according to the characteristics of each pattern
by changing and re-learning the preprocessing of the input
data, the threshold decision method, the type of similarity
and the vigilance parameter during module generation. Their
proposed algorithmwas able to detectmore type of defect pat-
tern including mixed pattern compared to the similar studies.
Hsu and Chien in [58] developed a hybrid data mining
approach which combined ART1 and spatial statistics to
quickly extract systematic and random patterns from WBM.
Furthermore, a decision tree algorithm was constructed for
identifying the root causes of specific patterns. However,
due to the vigilance parameter settings used in ART1, some
systematic patters were misclassified as random patterns in
this study. Hence, the lower the vigilance threshold value,
the more patterns are extracted from the maps. On the other
hand, a low vigilance threshold value may also cause dis-
similar maps to group in the same cluster. Huang et al.
in [72] conducted similar study to what have been investi-
gated in [71]. However, cellular neural networks combined
with genetic algorithm were used to classify wafer patterns
instead. A cellular neural network (not to be confused with
convolutional neural network) is an unsupervised neural net-
work that is composed of a massive aggregate of analog
circuit components called cells. Setting up a cellular neural
network needs a proper selection of circuit parameters of
cells. The dynamics of a cellular neural network is determined

by the set of circuit parameters, which are collectively called
the cloning template. A genetic algorithm was used to settle
the cloning template for the cellular neural network owing
to its success in the applications of optimization. This study
outperformed the previous study in [71] remarkably as it
achieved an accuracy of 99.2%. However, the false alarm
rate of this study was relatively high. Furthermore, no expla-
nation was provided for the different accuracy results for
using MLP algorithm, despite of using same approaches in
both studies. Liu and Chien in [87] used different type of
ANNs for different purposes to analyse and classify WBM
defects. Cellular neural network was used first to eliminate
WBM defect noise and enhance the patterns against ran-
dom errors. Moment invariant and ART1 were then used
for pattern clustering and classification respectively, where
moment invariant can make the same shape in one cluster,
whether the shape’s size or position are changed. ART1 can
self-lern by characteristic of each WBM. These algorithms
were integrated with a user interface system that allows users
to execute the following system operations including: loading
the analysed dataset, adding or retracting the decision knowl-
edge, controlling the parameters in WBM patterns clustering
system, and monitoring the clustering results. Chien et al.
in [86] used ART1 classifier as a final classification step to
deal with the wafer being classified as having spatial random
defects with higher failure percentage and to find new defect
patterns for further classification. The filtered wafer defects
that feed ART1 algorithm came from predefined conditions
using SPC charts that cannot detect all types of defects (e.g.
sparse defects). In SPC chart a set of thresholds were used
upper control limit (UCL) and lower control limit (LCL)
such that if the failure percentage of the WBM exceeds the
UCL the wafer will be classified as a defect, otherwise if
it fall below the LCL will be checked for further defects
using various filters and ART1 classifier as mentioned before.
Chang et al. in [113] proposed an automatic inspection
approach for classifying wafer defects into four classes based
on a SOM. The feature vector containing GLCM param-
eter and color information were used as an input to the
network. The inspection results achieved a sensitivity value
of 0.967 and a specificity value of 1.

Unfortunately, unsupervised neural networks involving
SOM, ART, and Cellular Neural Networks cannot identify
two shift-variant or two rotation-variant defect patterns that
in fact belong to the same failure cause (i.e. distinguishing
between two parallel scratches or between a top zone and a
bottom zone) [70].

D. DEEP LEARNING
Deep learning has recently become the most influential
technology in machine vision and pattern recognition prob-
lems [383]. Deep learning concept involves the usage of Deep
Neural Networks (DNN), which can handle feature extraction
and classification methods in machine vision problems. DNN
is considered a class of ANN; however, the main difference
that make any ANN considered a DNN is DNN consists of
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three hidden layers or more. Moreover, DNN requires little
preprocessing and feature extraction as these processes are
embedded inside the network itself. DNN also uses large
number of layers compared to the number of nodes to realize
highly nonlinear functions. DNNs learn new useful represen-
tations from available features that capture essential statistical
regularities present from data itself, then the representation
features can be formulated for classification, regression and
specific problem in information retrieval. The independence
from prior knowledge and human effort in feature design is
a major advantage for deep learning in general and DNNs
[384]. For AOI applications reviewed in this paper DNNs are
implemented using the followingmethods: Autoencoders and
Convolutional Neural Networks (CNNs).

In DNN, set of models is used to learn high-level abstrac-
tions representation in data such as autoencoder (AE), denois-
ing autoencoder (DAE) and stacked denoising autoencoder
(SDAE) [93]. AE is a three-layer network including encoder
and decoder. The encoder maps the input data from a
high-dimensional space into codes in a low-dimensional
space, and the decoder reconstructs the inputs from the cor-
responding codes. AE can learn features in unsupervised
manner by minimising reconstructed errors between input
data and output. However, the intrinsic problems of AE, such
as simply copying input layer to hidden layer, make it not
effective to extract meaningful features even though its output
can be a perfect recovery of the input data [385]. On the other
hand, DAE takes a corrupted version of data as input and
is trained to reconstruct or denoise the original inputs from
a corrupted one, which can prevent the AE from just sim-
ply learning an identity mapping between the input and the
reconstructed output, and captures more informative hidden
patterns and obtains robust and powerful representations from
the noisy features. DAE also consists of an encoder process
and a decoder process. Several DAEs can be stacked together
to form a deep network and learn high-level representations
which can be called SDAE. Therefore, SDAE is considered
a special class of DAE where stochastic noise is added to the
input layer of the AE and then trains it to output the same
input without noise. In general, the training process of SDAE
includes an unsupervised pre-training step and a supervised
fine-tune step. Another popular type of AE family is Sparse
Autoencoder (SAE) which is considered is a variation of
Autoencoders, where it offers reduction in the neurons used in
the hidden layer and therefore these neurons are considered
inactive and do not fire. This can improve the performance
of traditional autoencoder and exhibits more practical appli-
cation values [384], [386]. Hence, autoencoders in general
do not have the ability to classify on their own and are
usually integrated with other deep learning layers such as
CNN to fulfill the purpose of classification [387]. Yu in [93]
proposed detection and recognition system for detectingWM
defects based on amodified version of SDAE called enhanced
stacked denoising autoencoder (ESDAE). They have also
integrated manifold regularization in the learning procedure
which improve the algorithm’s performance effectively due

to the preservation of intrinsic information in the data. The
overall detection accuracy of the proposed method reached
89.6% which overcame other methods used for compari-
son such that SDAE, DBN, BPN and LR. However, due
to the large number of parameters used, deep autoencoders
in general are easy to suffer from overfitting with small
size sample, which limits the generalization ability of the
deep autoencoders to learn effective features [388]. A similar
approach was also proposed by Lee et al. in [389] to assess
wafer’s quality. However, sensor data were used instead of
WM, which is beyond the scope of this review. In a similar
study that proposed detection and recognition system for
detecting WM defects, Yu et al. in [91] integrated SDAE
and CNN to form a new deep learning model called stacked
convolutional sparse denoising auto-encoder SCSDAE.
The new model proposed can learn effective features and
accumulate the robustness layer by layer, which adopts
SDAE as the feature extractor and stacks well- designed
fully connected SDAE in a convolutional way to obtain
much robust feature representations. The challenges faced
this study and others that use same dataset is the imbalance
of data, in order to handle this problem under-sampling and
over-sampling methods are generally used to against highly
imbalanced datasets. Under-sampling randomly eliminates
majority class examples, while over-sampling increases the
number of instances in the minority class. Both of them aim
to obtain approximately the same number of instances of the
classes. The detection accuracy rate in this study was 95.13%
in the simulation case and 94.75% in the industrial case.
The results were compared to other classification algorithms
such SDAE, AlexNet, DBN, SVM, BPN, k-NN and C4.5 and
outperformed all of them in the simulation and industrial
cases. However, the problem of limited training data will
lead to overfitting of SCSDAE.Moreover, due to labeled data
scarcity for some patterns in WMs, it is a challenging issue
for SCSDAE to implement pattern recognition on imbalanced
dataset.

Data imbalance and the lack of training data are major
problems as mentioned earlier in our discussion. Tradi-
tional image augmentation techniques such as rotation, mir-
roring and scaling can overcome these problems in some
cases. However, as these techniques only manipulate the real
dataset without providing new insight for the data, inac-
curacy and overfitting in classification results may occur.
Goodfellow et al. in [390] proposed GAN that can be used
for data augmentation to generate more data for training. The
original proposed model consisted of two networks, namely,
generator and a discriminator. The two networks are trained at
the same time and compete against each other in a minimax
game. The generator is trained to deceive the discriminator
by synthesizing realistic samples, whereas the discriminator
is trained to be equipped with high discriminative capability
for the synthetic samples. These networks complement each
other and can help to understand the original data distribution,
providing a new perspective for the forthcoming classifica-
tion algorithm. However, the training of the two networks
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can be quite unstable and may suffer mode collapse prob-
lem [391], [392]. Wang et al. in [94] proposed an improved
GAN model integrated with CNN and other deep learning
models called adaptive balancing generative adversarial net-
work (AdaBalGAN) for identification of defective patterns in
WMs. This algorithm was specially proposed to enhance the
classification results against imbalanced datasets. Moreover,
the study proposed a conditional categorical generative adver-
sarial network to rebalance the WM dataset by generating
simulated instances for minority class of defective patterns.
Three parts are involved in the previous process; the first
part is a pattern recognition model which consists of CNN
that classifies the real WM samples, the second part is a
generative model which also consists of CNN that generates
simulated WMs according to the real samples from first part.
Finally, in the last part, a classical CNN (Le-net5) is used
to compare between the real wafer and simulated WMs and
guarantee the similarity between them. The proposed method
resulted in high classification accuracy for some patterns
(up to 100%) and also outperformed other algorithms that
were compared to it such as SVM, Adaboost, CNN and
GAN. Kim et al. in [255] proposed an algorithm based on
CNN with stacking ensemble model and MLP, to classify
four types of TFT-LCD defects. In their investigation, they
have noticed that the size of defects is very small compared
to the patterned panel in the background. Therefore, they
proposed a feature extraction scheme to eliminate the patterns
in the background for better classification results by applying
three steps: find the pitch of each panel image, calculate the
pitchwise difference score for each pixel and apply thresh-
olding. An algorithm was proposed in this study to check
the efficiency of using the pattern elimination technique by
using several MLP and CNN models. They have achieved an
overall accuracy in their classification of 86.13%. However,
they did not mention the time needed for the algorithm as they
used too many models which may affect the computational
time. Mei et al. in [215] proposed a method that combined
handcrafted features and unsupervised deep learning-based
features to detect Mura defects in TFT-LCD. The method
was named joint-feature-representation-based defect recogni-
tion framework (JFR-DRF). Various unsupervised algorithms
were compatible for the unsupervised deep learning-based
feature extraction part; however, SAE algorithm was used
to demonstrate its ability. The handcrafted features were
extracted with methods similar to GLCM technique that
requires coefficients such as entropy and anisotropy coeffi-
cients based on the grayscale histogram. Then, the features
extracted by these parts will be merged into a single feature
vector, which acts as the representation for the Mura defect
image. After subsequent processing, it will be classified using
one-against-all SVM classifier. In this study, it was proven
from statistical results that combining handcrafted and unsu-
pervised feature extraction outperformed the performance of
using only one of them. However, fused feature represen-
tations may also have the risk of being affected by poor
representations frommodalities which are not appropriate for

the tasks.Moreover, deep learning-basedmethods can require
considerable computational resources and time to perform
training and inferencing [244].Mei et al. in [250] proposed an
algorithm to detect texture surface defects in general such as
LCD panels, ceramic tiles, and textiles. Where Mura defects
is one of the LCD panel defects investigated in this paper. The
algorithm is carried out by reconstructing image patches with
multiscale convolutional DAE (MSCDAE). The MSCDAE
method employs a three-layer pyramid to perform multiscale
defect inspection. This study used only defective-free sam-
ples for model training, since collecting and labelling large
number of defective samples is cumbersome. However, their
approach requires a separate model to be trained and tested
for each layer; therefore, it is time-consuming and leads to
excessive memory consumption. Their approach achieved
a reasonable recall but relatively low precision [256].
Yang et al. in [256] overcame the limitation in the previous
study and proposed an algorithm based on fully convolutional
autoencoder approach (MS-FCAE) to inspect texture sur-
face defects including TFT-LCD defects. This algorithm can
accurately segment various types of product surface defects
based on a small number of defect-free product samples
(50 defect-free sample). The data sample for the TFT-LCD
defects includes spot defects, line defects, and region defects.
Their inspection results showed that the proposed algorithm
both simultaneously and accurately inspects all types of
TFT-LCD defects as it achieved a 98.1% recall and 92.1%
precision, whereas the other defect inspection methods com-
pared with the proposed are suitable only for certain types
of defects. Furthermore, compared with MSCDAE used
in [250], MS-FCAE requires no redundant computation at all.
Jo and Kim in [286] proposed a regularized auto-encoder
algorithm as a features extraction approach to separate
the background of images from the defective regions for
inspecting displays of mobile devices. This study focused on
comparing their approach to similar feature extraction and
dimension reduction approaches low-rank-approximation-
based separation methods (specifically SVD) and the
segmentation-based method. They have shown that their pro-
posed method was able to detect defects ranging from high
visibility such as faint dot type defects to not clearly visible
because of the small intensity difference from the background
such as Mura defects. On the other hand, the previously men-
tioned approaches failed to detect these defects. Despite that
SVD outperformed the proposed method in terms of the com-
putation timewith an average 183ms comparedwith 313ms in
the proposed method. Many drawbacks were also observed in
this study, such as in the simulated defect images, overlapping
defects were not considered. Furthermore, the method needs
to repeat inspection several parts of an image ofmobile device
because it only processes 700 × 990 size image due to the
limitation of computing resources.

A special case of DNNs is when the matrix multipli-
cations include convolutional filter operations, which is
common in DNNs that are designed for image and video
analysis. Such models are known as convolutional neural
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FIGURE 44. CNN structure.

networks (CNNs) [18]. CNNs have been widely known
for their high image recognition capabilities in recent
years [21], [25]. Usually, the methods based on CNN are
preferable in imaging applications and can obtain more pre-
cise results compared to traditional methods due to many
factors such as; capturing grid-like topology of images
effectively, decrease the computation time due to pooling
and convolutional layers usage, capability of differentiating
large number of classes, and learning image features auto-
matically without using image processing tools for feature
extraction [393]. Remarkable achievements in feature extrac-
tion and image classification have been produced by CNNs
such as AlexNet [394], VGG [395], ResNet [396], and
DenseNet [397], which have outperformed conventional clas-
sification models such as SVM. As a result, CNNwas applied
to optical defect detection problems after AlexNet was pro-
posed [383]. A typical CNN consists of input layer, convolu-
tional layers, pooling layers, fully connected layers, and out-
put layer as shown in Figure 44. Convolutional and pooling
layers (which performs convolutional and pooling operations
respectively) are the main elements that distinguish CNN
from other types of NNs. In CNN, pooling layers lay between
two successive convolutional layer and output layer follows
the last fully connected layer which connects all hidden units
in previous layers. The convolution layers play an essential
role in extracting features from the input images by per-
forming three operations throughout an input array. First,
it performs element by element-by-element multiplication
(also known as dot product) between a sub-image array (that
is equal in size of a kernel) of an input image and kernel with
random weights. Secondly, the output of this operation will
be added to bias and result in what so called feature map. The
initial weights of the kernels are randomly generated, while

the bias can be set based on the networks’ configuration.
A suitable stride can be defined that identify how many of
pixels the kernel can slide across the input image. A careful
consideration must be made in selecting the stride size, as a
larger slide can reduce computation time, but it may also lose
important features from the input image. On the other hand,
pooling layers are important in improving image classifica-
tion. It minimizes computation time by reducing the spatial
size of the input image array [398]. This process is often
called down sampling. There are two widely used pooling
functions used for this purpose which are max-pooling and
average-pooling (also known as mean-pooling). Lin et al.
in [47] used CNN (called LEDNet) for inspecting LED chips
defects. They considered two defects in their analysis, line
blemishes and scratch marks. The LEDNet they used con-
sisted of six convolutional layers, three max-pooling layers,
an average pooling layer and a fully connected layer. Average
pooling were used to highlight the importance of each feature
and relate them to the correct class (line blemishes or scratch)
with the aid of associated weights and class activation map-
ping in following fully connected layer. Due to the lack of real
defected LED chip sample images and since CNN needs large
amount of data to be effective, the dataset provided to train
the CNN were generated using geometric transformation
technology that simulates the defects with adjusted images.
Rotation, flipping, shift, noising and blurring effects were
carried out randomly on the adjusted images to mimic the
real situation. The inaccuracy rate of classifying the defects
for chip 1 and chip 2 were 5.04% and 5.51% respectively.
Their proposed approach were compared to the algorithm
used in [45], they got 14.53% and 11.97% inaccuracy rates
for chip1 and chip2 respectively which more than twice the
inaccuracies used in LEDNet. Even though this study got
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considerably low inaccuracy results; however, their algorithm
were limited to classify only two kind of defects. Further-
more, there was no evidence that their adjusted images for
the training set can simulate the real case for defected chips.
Yang et al. in [41] used CNN for the purpose of assessing the
diameter of the LED cup aperture. Since no feature extraction
needed to feed the CNN, the images were directly used as the
input neurons of the network. The network consisted of five
convolution layers and two fully connected layers. Training
samples for the network were used from the captured images,
each sample of the image were rotated 90◦ four times and
horizontal flip were applied to each image to further increase
the training samples for the network. The detection rate for
unqualified cups was 100%with false alarm rate of 8%. How-
ever, the need for a large labelled dataset may limit its applica-
tion [399]. For semiconductor wafer inspection, Kyeong and
Kim in [104] used CNN in their classification, in which they
considered the WBM as an input binary matrix of 0s and 1s
that have a size of 56× 53. In their study three convolutional
layers, three pooling layers and a fully connected layer with
ReLU and softmax activation functions have been used. The
CNN model that they have proposed for classification was
designed to detect multiple defects on same wafer. In order
to do so, they proposed four individual CNN classifiers for
each defect class, in such away that each classifier determines
whether the corresponding pattern exists when several defect
patterns are mixed over a wafer. The main drawback of this
approach is that to detect a mixed pattern defect, the output
of each individual classifier has to be obtained [400]. A sim-
ilar approach was proposed by Cheon et al. in [134]. The
proposed CNN model in this study can extract features from
the real wafer images that are acquired using SEM and accu-
rately classify the input data into five different wafer defect
classes. Their model can also classify the unknown defect
classes by combining the CNN model with k-NN classifier.
However, the data used in this study were highly imbalanced
and no solution were proposed to mitigate the outcomes of
this issue [401]. Nakazawa and Kulkarni in [106] also used
CNN with three convolutional layers, three pooling layers
and two fully connected layers for wafer inspection. The
input wafer image size was 286× 400. To evaluate the CNN
performance 28,600WBM imageswere generated in addition
to 1191 real wafers for 22 defect classes which improved the
test accuracy up to 98.2%. However, there was high reliance
on simulated data for training and validation of the CNN
model because real datawas highly imbalanced. Furthermore,
this study does not provide any information about the defect
cluster, size and its location. In a later study conducted by
the same authors in [107], Nakazawa and Kulkarni overcame
the lack of information problem using different type of CNN
models such as Fully Convolutional Network (FCN) [402],
SegNet [403] and U-Net [404]. These models were compared
to each other with regards to their classification performance
and training time. The main concept of FCN is to replace
the fully connected layers of typical classification neural
networks with convolutional layers so that a network output

can be a two-dimensional heat map, rather than multiple set
of classes. In FCN, shallow layer’s outputs are merged to
deeper layers so that the network can maintain both local and
coarse information. SegNet were designed to be an efficient
architecture for pixel wise semantic segmentation, where it
consists of an encoder network, a corresponding decoder
network followed by a pixel-wise classification layer. Each
of the encoder and decoder networks consist of 13 convo-
lutional layers. The decoder uses pooling indices computed
in a max pooling step of the corresponding encoder to per-
form non-linear up- sampling. Since positional or boundary
information are lost during the max pooling operations in
the encoder network, maintaining positional information for
each up-sampling operation in the decoder network is critical
for accurate pixel-wise segmentation [403]. U-Net is similar
to SegNet in terms of having encoder-decoder architecture;
however, instead of using the pooling indices in the max
pooling step, U-net copies and crops a feature map in each
encoder layer to the corresponding decoder layer to maintain
local positional information. For the segmentation problem,
maintaining local information is the key so that each architec-
ture has its own way to transfer local details from shallower
layers to deeper layers. SegNet and U-Net models outper-
formed FCN in classify WMs with predefined classes and
unseen defects. However, they tookmuch longer training time
than FCN. Yu et al. in [92] constructed an algorithm based on
CNN to recognize and classify WM defects. The proposed
method was divided into two parallel approaches: offline
modelling and online processing. In the offline modelling
stage, a wafer defect pattern recognition model that consisted
of two sub-models was constructed. These two sub-models
were basically two CNNs, one of them was responsible for
wafer defect pattern detection and the other for wafer defect
pattern classification. Both CNNs consisted of three con-
volutional layers and three pooling layers, while the detec-
tion CNN consisted of two FC layers and the classification
CNN consisted of three FC layers. Dropout method were
used in both CNNs to avoid overfitting. Furthermore, PCA
method were used in the classification CNN after the second
FC layer to reduce the feature dimension and then features
were normalized. In the online processing stage, the WM
is pre-processed and used as an input to both CNN models.
It was noticed in their study that the detection CNN has a sim-
ple structure and a fast computing speed compared with the
classification CNN due to low probability of process faults
in the actual manufacturing process. Their proposed method
achieved an average detection accuracy of 93.13%, which
outperformed the accuracy of other algorithm that were used
for comparison. However, using PCA for feature reduction
is redundant since CNN has the ability of considering the
important features and discarding the unnecessary ones.

Most of the researchers that investigatedWMdefects using
CNN are using simulated data to solve the problem of noisy
and imbalanced data for WM pattern defect identification.
In this way, they can improve the classification accuracy, but
it becomes costly and time-consuming. Also, denoising the
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actual data can destroy the actual defect patterns on the wafer
images [60].

Cai et al. in [175] inspected the SMT solder joint defects
in PCBs by using three types of CNNs. The entire sam-
ple images were fed to the first CNN (called CNN-1).
Sub-regions which represent the ROI were selected from the
entire images manually and fed to the second CNN (called
CNN-2). The output for CNN-2 were used as an input for
a third CNN (called CNN-3). The outputs for both CNN-1
and CNN-3 were used for classification of the SMT solder
joint (Good or bad). The concept of the classification depends
of the weighted some of both CNNs and the probability of
each. The results of the inspection using this method was
compared to other methods such as Bayes, SVM, G-MLP,
GMM and ViBe. It was proved by experimental results that
the proposed method overcame the others by remarkable
percentage. However, their approach classified the solder
joints as good or bad and did not consider classifying the
defect type, which does not justify this study to use such a
complex algorithm that is optimized for multi-class classifi-
cation. Yuan et al in [285] proposed a CNN-based approach
to classify IR hole defects in mobile screen glass. In order to
overcome the lack of training data, they proposed a data gen-
eration algorithm that consists of two steps, defect superposi-
tion, and data augmentation. The superposition step overlays
defects on a chosen non-defected image in randomly selected
locations with stochastic sizes, shapes, and severities. The
defect images generated from single one template would
naturally have the same scale, shape, and background color,
making them not accord with the actual situation. There-
fore, the augmentation step is applied followed the super-
position step to augment the variety of the generated defect
images. Finally, considerable manual labelled real images
were collected and used to verify the proposed detection
method.

Due to complex and deep structure, CNN requires com-
paratively large-scale image data, a lot of hyper parameters
tuning, high computational power (such as parallel GPUs),
and long training time because of the large amount of labelled
data used [60]. To overcome these problems, Yang et al.
in [244] proposed transfer-learning-based approach called
online sequential classifier and transfer learning (OSC-TL)
to investigate Mura defects in FPDs. Unlike conventional
CNN, which assumes that training data and future data must
be in the same feature space and must have the same distri-
bution, transfer-learning algorithm reuses the feature extrac-
tor portion of a previously trained network using existing
large datasets and retrains only the classification functionality
using specific datasets appropriate for different classification
tasks. The proposed OSC-TL uses a pretrained CNN using
ImageNet LSVRC-2012 dataset for feature extraction step.
Then two more modules are used for training and classifica-
tion of the defects. The proposed algorithm was compared
to other deep learning approaches and showed remarkable
overperformance in terms of the computational time, while
maintaining similar accuracy levels.

Tables 11,12,13,14, and 15 summarize the inspection algo-
rithm details for selected research articles.

VI. SORTING MECHANISM
To complete the cycle of fully AOI system, some researchers
considered establishing a sorting mechanism to separate
products into different categories (e.g. good, recycle, scrap
etc.) as shown in Figure 16. In order to do so, an industrial
controller such as PLC is usually used to send a command
(according to the decision received by the inspection algo-
rithm) to the sorting system that consists of motors, cylinders
and conveyor belt.

Yang et al. in [41] designed a control unit to perform
the separation command by removing the defective LED
cups from the production line for further considerations.
A photoelectric sensor is used to send signal for the control
unit indicating that an LED cup has entered the inspection
region. Based on the inspection algorithm results, the control
unit send a command to series of pneumatic system com-
ponents such as air pump, air claws, solenoid valves and
pneumatic cylinders to perform the task required as shown
in Figure 45(a). The separation action is divided into five
steps as shown in Figure 45(b). The cylinder is used for
moving LED cup to the recovery area. Air claws are used
for gripping the LED cup, while the cylinder is used for
raising the LED cup up. Both the air claw and the cylinder
are driven by solenoid valves and the air pressure is supplied
by an air pump. Similar configuration was also considered
by Sun et al. in [293] to inspect thermal fuse defects as
shown in Figure 46. When a thermal fuse was first sorted
and fed into the system, a proximity sensor is triggered and
a transistor–transistor logic signal is sent to activate the CCD
camera to acquire a digital image. The inspection algorithm
was then initiated to detect defects in the fuses. If any defect

FIGURE 45. Separating mechanism proposed in [41].
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TABLE 11. Optical inspection algorithm details for research articles that investigated semiconductor wafer defects.
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TABLE 12. Optical inspection algorithm details for selected articles that investigated PCB defects.
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TABLE 13. Optical inspection algorithm details for selected articles that investigated FPD defects.
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TABLE 14. Optical inspection algorithm details for research articles that investigated LED defects.

TABLE 15. Optical inspection algorithm details for research articles that investigated miscellaneous defects.

was found, a signal is sent to the controller to screen out the
defective fuse by a designed mechanism. Authors in [49],
[299] have also proposed sorting mechanisms for inspecting
LEDs and ceramic capacitors respectively.

VII. LIMITATIONS OF AOI SYSTEMS & FUTURE
DIRECTIONS
Despite of the AOI systems’ advantages mentioned in
sections I and II of this article, many limitations are still
facing these systems. One of the major limitations is the
precise calibration and configuration needed for the system
to provide adequate results. This limitation can narrow the

system’s ability to be adaptable for various products and
makes it more specific for certain product measurements
and features. Illumination variations is also one of the major
concerns for these systems, such as the illumination settings
must remain constant and/or controlled to avoid unwanted
shadows or light noises that may confused with defects.
Therefore, research must be directed towards the develop-
ment of real-time devices that do not get affected by operating
or environmental conditions [414].

The viewing angles of image acquisition systems are most
of the time limited to certain predefined 2D plane of the
inspected component. Yang et al.in [299] provided a solution
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FIGURE 46. System configuration proposed by Sun et al. in [293].

FIGURE 47. 3D acquisition system proposed in [415].

for this problem by implementing multiple image acquisition
systems to acquire different views for the inspected film
capacitors as shown in Figure 28. However, this solution is
considered costly and needs special alignment. 3D optical
inspection techniques proposed by Madrigal et al. in [415]
can be considered an effective tool to mitigate these prob-
lems and to provide full description of the component 3D
nature. Their proposed system uses structured light projection
to help in acquiring the 3D nature of the object as shown
in Figure 47. This system can be very useful in investigat-
ing PCB defects such as solder joints and IC components.
Furthermore, authors in [416], [417] suggested robot arms
for various industrial inspection and recognition tasks, which
may provide more flexibility and mobility towards accessing
different angle views of the inspected product. AOI sys-
tems are in general excellent tool in detecting external sur-
face defects; however, it becomes cumbersome to investigate
internal defects or any other defect that the system is not
programmed to look for. Although X-ray and thermography
can partially solve the problem of detecting internal defects;
however, these systems are effective in inspecting certain
electronic products such as PCBs and BGAs.

When integrating AOI techniques with machine learning,
large number of samples are needed for the training process,

especially when implementing deep learning algorithm. This
may force industries to rely on simulated data or mathemati-
cal models for providing enough training samples, whichmay
not be sufficient in representing the defect features. There-
fore, various electronic industries should consider building a
relevant image database for their product defects to enhance
their future optical inspection algorithm’s performance.

VIII. CONCLUSION
Quality monitoring is essential step for minimizing product’s
defects in various industries. AOI is considered one of the
simplest and commonly used quality monitoring approaches
used for automatic industrial inspection. The field of AOI
is vast as it involves a variety of subjects ranging from
hardware setups for image acquisition to inspection and
decision-making algorithms. For this reason, the research
opportunities in this field are wide open and have the potential
to improve in the near future.

Many electronics manufacturers are integrating AOI sys-
tems in their production steps to avoid human inspectors’
extra cost and possible errors. The majority of these man-
ufacturers are located in Asia. In this study, we reviewed
and critiqued more than 300 articles that used AOI systems
and algorithms to investigate various defects in electronics
industry. During our searching process for relevant papers
to be reviewed, we have found that AOI systems are widely
used in fourmajor applications: semiconductor wafers, FPDs,
PCBs, and LEDs defect detection. Various types of defects
were considered for each inspected component. Semicon-
ductor wafer defects are usually inspected according to their
distinguished defect patterns. Solder joints and IC component
defects are commonly inspected defects in PCB industry.
TFT-LCD defects are widely investigated using AOI among
other types in FPD industry. Unlike previously mentioned
electronic components, we observed that there are more vari-
ety of defects investigated using AOI in LED industry such as
apertures, LED chips, SMD-LED and cosmetic defects. Other
miscellaneous electronic components were also considered
in this review such as camera modules, thermal fuses, and
passive electronic components.

Hardware and software setups play vital role in the quality
of the acquired image for inspection. We found in this paper
that these setups can also affect the accuracy and false alarm
rates of the final classification results. Environmental and
variable illumination settings are avoided in AOI systems
since they increase noise and false alarms. Customized illu-
mination can be used in some applications for better defect
description such as using tiered illumination for PCB solder
joint inspection to capture the 3D nature of the inspected
component. In this article, the advantages and limitations for
different illumination settings used have been highlighted.
Selecting the right image sensor and lens for inspection is
also important. Many factors are considered in the selection
process such as size of the inspected component, filed of view,
frame rate and resolution. While most of image samples are
acquired using image sensors alone, auxiliary systems such
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as OCT and SEM have been also used to aid the process.
Thermography and X-ray can be also used to acquire sample
images for certain applications such as in PCB and BGA
inspection. Circuit probe inspection is widely used to investi-
gate semiconductor wafer defects such that WM images can
be generated for defect classification.

Inspection algorithms that process the acquired images
were also introduced. Three main stages are used in applying
the inspection algorithm: preprocessing, feature extraction &
selection and classification. In preprocessing, several filter-
ing, denoising and geometrical operations are applied to the
acquired image. This is very useful in removing the unwanted
noise that affects the classification decision. Denoising is
essential step in removing random defects fromWM patterns
such that inspected samples can be classified according to
the systematic defect. In the feature extraction & selection,
the algorithm tries to isolate and locate the defective features
in the image. Several statistical and geometrical measure-
ments are also used to assess the features of defect. Seg-
mentation and template matching are two well-used feature
extraction algorithms according to the reviewed papers. Fea-
ture selection process can reduce the number of redundant
extracted features such that the algorithm performs much
faster. PCA is one of the mostly used algorithms for feature
selection. Finally, classification is the decision-making stage
of inspection algorithm. Rule-based and learning-based are
two classification approaches used in the reviewed papers.
In rule-based, a set of pre-programmed if-then rules are
used to assess the features acquired from the previous step.
In learning-based classification, supervised and unsupervised
machine learning algorithms such as k-NN, Bayes, decision
trees, SVM, clustering and ANNs are used for the classifica-
tion process. Unsupervised machine learning algorithms are
widely used in finding WM patters to investigate semicon-
ductor wafer defects, while supervised learning techniques
are used in the rest of studies. In general, machine learn-
ing algorithms overcome rule-based learning by their ability
to find anomalies in the input data (features) based on the
training process and without any need of customized pro-
gramming. However, overfitting and imbalanced data are two
major drawbacks in using learning-based algorithm. These
two problems can be solved by having sufficient data for each
defect class considered or by applying several techniques
such as regularization and bootstrapping.

Many recent articles have also used deep learning algo-
rithms in investigating defects. The recent development of
CNNs such as AlexNet opened the door for these mod-
els to be used in AOI tasks. Deep learning models can do
preprocessing, feature extraction & selection and classifica-
tion all at once within their hidden layers. In deep learning
layers, many complex features can be captured that tradi-
tional feature extraction approaches may fail to recognize.
The detection accuracy can be also improved using deep
learning due to the large number of parameters used in
training the models. Despite previously mentioned advan-
tages, deep learning models are considered data hungry.

Furthermore, it requires large processing and GPU capabil-
ities. The large data required for training are essential in
providing high accuracy and to avoid overfitting. Several data
augmentation approaches are used to address this issue such
as using GAN. Transfer learning can be used to avoid large
memory usage by implementing pretrained deep learning
models.

AOI systems are still facing some limitations that require
further improvements. For instance, they are most of the time
limited for inspecting surface defects. Furthermore, the view-
ing angles for the inspected components are usually fixed to
certain angles which may prevent the system to miss some
parts. Robot arm and 3D inspection approaches can be used
to mitigate these problems.

The current technologies and algorithms used in this
review are currently being tested and some of them will be
implemented in EU funded project called IQONIC that uses
AOI technologies to investigate optoelectronics defects.

APPENDIX
SEARCHING CRITERIA & KEYWORDS SELECTION
The most logical choice of keywords that is relevant to the
main scope of this research would be ‘‘Optical Inspection’’
AND ‘‘Electronic component’’. However, researchers tend
to use the specific electronic component that they are ana-
lyzing for the title and keyword indexing in their research
articles instead of using general terms such as electronic
parts. Therefore, it is not straightforward task to choose
one keyword to follow in this research. In order to over-
come this problem, more general keywords were used such
as ‘‘Inspection’’ AND (‘‘Machine Vision’’ OR ‘‘Computer
Vision’’). Even though the previous keyword will show many
irrelevant results (the total is around 7000 results); how-
ever, it makes it possible to choose the relevant research
articles manually. It has been found from the previous key-
word search that a lot of researchers who studied electron-
ics defects focused their attention to printed circuit boards
PCBs, semiconductor wafers, light emitting diodes LEDs, flat
panel displays FPDs, and other miscellaneous components
such as passive electronics and camera modules. According
to that, the keywords were adjusted to explore more about
the most commonly investigated defects. The new keywords
are:

• ‘‘Optical Inspection’’ AND ‘‘LED’’
• ‘‘Optical Inspection’’ AND ‘‘Wafer’’
• ‘‘Optical Inspection’’ AND ‘‘PCB’’
• ‘‘Optical Inspection’’ AND ‘‘FPD’’

Manual searching technique were also conducted by explor-
ing the references used in the reviewed papers.

LIST OF ABBREVIATIONS
The acronyms and abbreviations used throughout the review
and their definitions are listed below:
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A-SVDD Adaptive Support Vector Data Description
ACO Ant Colony Optimization
ADTree Alternating Decision Tree
AE Autoencoder
ANN Artificial Neural Network
ANOVA Analysis of Variance
AOI Automatic Optical Inspection
ART Adaptive Resonance Theory
AS-PSO Accelerated Particle Swarm Optimization
BDCT Block Discrete Cosine Transform
BGA Ball Grid Array
BPNN Back Propagation Neural Network
CART Classification and Regression Tree
CCD Charge-coupled Device
CCL Connected Component Labelling
CH Contact Hole
CMOS Complementary Metal-oxide Semiconductor
CMP Chemical Mechanical Process
CNN Convolutional Neural Network
COB Chip-on-board
CR Contour-based Registration
DAE Denoising Autoencoder
DBSCAN Density-based Spatial Clustering of

Applications with Noise
DCT Direct Cosine Transform
DDPFinder Dominant Defective Patterns Finder
DFT Discrete Fourier Transform
DIP Dual-in-line Package
DNN Deep Neural Network
DRAM Dynamic-random Access Memory
DTSVM Decision Tree Support Vector Machine
DTW Dynamic Time Wrapping
DWT Direct Wavelet Transform
ECS Example Contribution
ESDAE Enhanced Stacked Denoising Autoencoder
EWMA Exponentially Weighted Moving Average
E–M Expectation–maximization
F-SVDD Fast Support Vector Data Description
FCN Fully Connected Network
FFT Fast Fourier Transform
FOV Field of View
FPD Flat Panel Display
FR Frame Rate
FVCP Fuzzy Variable of Clustering Pattern
GA Genetic Algorithm
GAN Generative Adversarial Network
GB Gradient Boosting
GE Gate Electrode
gHMT Growing Wavelet Hidden Markov Tree
GLCM Graylevel Co-occurrence Matrix
GRN General Regression Network
HDR High-dynamic-range
HNN Hopfield Neural Network
HP High Power
IC Integrated Circuit
ICA Independent Component Analysis

IFCM Improved Fuzzy c-means Clustering
INCC Improved Normalized Cross Correlation
IR-CUT Infrared Cut-off
k-NN k-Nearest

Neighbor
KPCA Kernel Principle Component Analysis
LBF Local Binary Fitting
LBP Local Binary Patterns
LCD Liquid Crystal Display
LCL Lower Control Limit
LDIM Localized Defects Image Model
LED Light Emitting Diode
LVQ Learning Vector Quantization
MCV Markov Concurrent Vision
MDC Minimum Distance Classifier
MKSVR Multiple Kernel Support Vector Regression
MLP Multi-layer

Perceptron
MS-FCAE Fully Convolutional Autoencoder
MSCDAE Multiscale Convolutional Denoising

Autoencode
MSE Mean Square Error
NCC Normalized Cross Correlation
NDF Neighboring Difference Filter
NSCT Non-subsampled

Contourlet Transform
OCSVM One-class

Support Vector Machine
OCT Optical Coherence Tomography
OLED Organic Light Emitting Diode
OPBC Outlier prejudging-based Image

Background Construction
OSC-TL Online Sequential Classifier and Transfer

Learning
PC Principle Component
PCA Principle Component Analysis
PCB Printed Circuit Board
PCC Pearson’s Correlation Coefficient
PE Pixel Electrode
PICC Partial Information Correlation Coefficient
PLC Programmable Logic Controller
PLED Polymer Light Emitting diode
PLS Partial Least Squares
PR Pixel Resolution
PSO Particle Swarm Optimization
QK-SVDD Quasiconformal Kernel Support Vector Data

Description
RBF Radial-basis

Function
RGRN Randomized General Regression Network
RMI Rotational Moment Invariants
ROI Region of Interest
RPCA Robust Principle Component Analysis
SAE Sparse Autoencoder
SD Source and Drain
SDAE Stacked Denoising Autoencoder
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SDC Segmentation, Detection, and Cluster-
Extraction

SE Semiconductor Electrode
SEM Scanning Electron Microscope
SMD Surface-mounted

Device
SMOTE Synthetic Minority Over-sampling Technique
SMT Surface Mount Technology
SOM Self-organising

Map
SPC Statistical Process Control
SURF Speeded Up Robust Feature Extraction
SVC Support Vector Clustering
SVD Singular Value Decomposition
SVDD Support Vector Data Description
SVM Support Vector Machine
SVR Support Vector Regression
SZ Sensor Size
TCS Truncated Component Solution
TFT Thin-film

Transistor
THT Through Hole Technology
UCL Upper Control Limit
ViBe Visual Background extraction
WBM Wafer Bin Map
WD Working Distance
WKDE Weighted kernel density estimation
WM Wafer Map
WMS Wavelet-based

Multivariate Statistical
WNN Wavelet-based

Neural Network
WTA Winner Take All
WTMS Wavelet Tansform Modulus Sum
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