Printed Circuit Board Assembly & PCB Design SMT Electronics Assembly Manufacturing Forum

Printed Circuit Board Assembly & PCB Design Forum

SMT electronics assembly manufacturing forum.


Solder Paste Evaluation

Views: 7795

ASIR

#38918

Solder Paste Evaluation | 9 January, 2006

Hi,

Looking for the quickest and cheapest method to qualify solder pastes for both PbF and Non-PbF. Any suggestion will be helpful.

Thanks

This message was posted via the Electronics Forum @

reply »

#38921

Solder Paste Evaluation | 9 January, 2006

Check Phil Zarrow's site [ http://www.itmconsulting.org ]. Phil wrote an article on paste evaluation a few years ago.

reply »


URL

#38949

Solder Paste Evaluation | 10 January, 2006

Why pay someone to start you on your evaluation. I'll send ya a decision matrix that will work 10 times better than any consultant that could rep the highest paying paste manufacturer.

reply »

#38964

Solder Paste Evaluation | 11 January, 2006

I agree with URL. We made a mistake years ago paying a consultant for something that can be done your in-house technical staff. The consultant took a bunch of notes and suggested we all wear "finger cots". His solution didn't help us with our problems.

reply »


URL

#38966

Solder Paste Evaluation | 11 January, 2006

Wow, you got off easy. He made a smock suggestion for ESD and next thing ya know we all had these stupid things that didn't fit right, get in the way and became a major pain in the arse (not to mention the people that never wash them. Stains are not a sign of being smart, or are they now?). Then he suggested we should switch over to an Al**a brand paste cause "that's what a lot of his customers were doing." So our management blindly changed over. Next thing ya know we have solder balls. So we had to change all our stencils over to homeplate. Long story short, we threw tons of money away and yields never improved. And we're stuck with a smock program that drains money out of our bonus program.

reply »

#38988

Solder Paste Evaluation | 11 January, 2006

We didn't intend to light anyone's fur on fire [get anyone's underwear in a knot, roil the waters, have a cow man] about consultants. The Phil Zarrow wrote a useful paper that could help in evaluating paste. Here read it ...

Evaluating Solder Paste � Not An Option Contributed by Phil Zarrow of ITM an Independent SMT consulting firm With soldering being the dominant source of assembly defects and solder paste being the key component of the process, how come a majority of SMT assembly facilities have no idea how they began using the solder paste that they do. While a few assemblers perform comprehensive solder paste evaluations, the vast majority of users either don�t know how Solder paste testing should be qualified for your applications in your facility. If you think that solder paste is a commodity in that �they all perform the same�, you are in for a major surprise. Factors affecting solder performance include equipment and set-up parameters, stencil fabrication methodology, component lead density, operator skills, component and board solderability as well as ambient temperature and humidity The ideal solder paste must perform as good as possible in the range of applications present and within the printing environment variation range. You can�t take someone else�s word for it, either, you have to test them yourself. Remember, In God We Trust, All Others Bring Data. How does one go about testing solder pastes? There are a number of procedures out there, including those published by the IPC and by solder paste manufacturers, and there are a few consultants out there well versed in this area that can help you. Some of these procedures use existing production equipment while others may require elaborate laboratory equipment. Here are some of the tests that can be used with the minimum of equipment and materials and yet get you on your way towards specifying the best solder paste for your application. Quantitative Solder Ball Test One of the most common soldering defect that occurs in SMT assembly is the formation of solder balls. These can be especially deadly to circuit functionality (as they have a propensity for causing electrical shorts) in a no-clean process. Here we don�t have the benefit of cleaning to �wash our sins away�. There are numerous factors in the soldering process that can cause fines of solder to separate from the main mass (fillet). These include improper reflow profile, lack of solderability of components and/or lands, misalignment of solder mask, misalignment of solder print, and many others but solder paste must not be a contributor to this problem. Sadly, many formulations do indeed exhibit a tendency towards solder balling. Regardless of whether or not we are cleaning the assemblies or using a no-clean process, the solder paste itself should not be solder ball prone. Therefore we utilize a test that eliminates all the other factors from the �stew�. The most straightforward method is to print a circle of solder paste onto a ceramic substrate. Here the solder has nothing to interact with but itself. Be sure that the ceramic substrate has been profiled in the reflow oven to the time/temperature duration that each solder paste manufacturer specifies. Using a stainless steel �stencil� as thick as you normally use, manually print a circle of paste .250� in diameter. After reflowing the substrate, take a look at the resulting fillet under 10X magnification. Evaluate the number and size of solder balls that satellite the fillet (ideally there should be none). Residue Examination This particular test also allows for the opportunity to visually examine the residue of a noclean formulation. Since the alumina substrate is white, one can assess the clarity (color) and thickness of the resulting residue surrounding the fillet. Of course, one of the major issues with very-low and ultra-low residue no-cleans is the ability to penetrate the residue with test probes to accommodate reliable In-Circuit testing. The residue should not impede contact with the test pads nor should it gum up the probe, both of which will lead to false readings. One means of testing this is to hook up a 5 volt power supply and digital voltmeter in conjunction with a force gauge. This would allow for comparative measurement of the force required to penetrate the flux residue to accommodate good contact. Solder Wetting The typical test for the ability of the paste to wet is to print the solder paste onto a substrate of bare copper clad laminate. Of course, no one really solders to bare copper so this test is one of �relativity�. It is best to equally prep the substrates by deoxidizing them as much as possible either chemically or with abrasion. If you have the facilities for crosssectioning the resulting fillets and measuring the angle that way, print the .250� diameter by .006� thick circles. However, lacking this, obtain a stencil comprised of a series of .025� x .050� apertures, arranged in a rows with spacing between the apertures varying as follows: .050�, .040�, .025�, .015�, .010� then .010�, .015�, .020�, .025�, .040� and .050� respectively. Print the paste onto the copper-clad laminate, reflow to manufacturers requirements as profiled for the substrate. After reflowing, clean the substrates in isopropyl alcohol and examine under 10 X magnification. Determine and record the smallest unbridged gap between two adjacent pads within a row, on either side of the test pattern. Note that the gap is considered �unbridged� if the reflowed solder is not in contact whereas a simple contact between two tinning layers is considered �bridged�. If you are using, or thinking of going to Organic Solder Protectant (OSP) coated substrates, instead of HASL, this test becomes particularly pertinent and extremely important. Use copper-clad laminates coated with the appropriate OSP and perform the test as described. Evaluations performed by ITM with our clients has demonstrated that many solder paste formulations, both OA and no clean, are not compatible with OSPs, including several that specifically claim they are. Slump Solder paste performance during the printing operation can have a profound result on the resulting solder joints. One of the factors that must be considered is the solder paste�s ability to stay well defined once released from the stencil. The material can collapse on itself or slump and spill over causing bridging. While a number of circumstances can contribute to this, including printing parameters, stencil parameters and others, the paste�s rheology must be such that it is not a contributor to this defect. Use the stencil described in the wetting test or one similar such as those designed to IPCA- 21 or IPC-A-20.3 Carefully print onto ceramic substrates or glass microscope slides. After carefully releasing the stencil, examine under 30 X magnification and record the incidence of slump, particularly at which pitch it became prevalent. Now comes the part that separates the �men from the milquetoast�. Most pastes perform fairly well here yet, to the assembler�s surprise, there is still occasional bridging as a result of slumping. What happens is that the rheology of the paste changes during the reflow cycle? As the solvents are driven off, particularly during the Preheat Soak stage, the chemistry of the paste is altered. This is typically where slump occurs. Thus it is important that these conditions be simulated during paste evaluation. This can be done by taking the previously printed and examined slump test printings that were evaluated at ambient temperature and placing them in a box oven set at 150 deg. C for two minutes. Remove the substrates from the oven and evaluate the occurrence of slump. ITM has found that most mainstream solder pastes in the market perform well in ambient but several leave a lot to be desired with regard to their performance during reflow. Tack The solder paste has to act as an adhesive to hold the components in place until the soldering cycle is completed. Tack should be evaluated as pre-placement and postplacement. For pre-placement evaluation, print several boards with each solder paste and evaluate the tack at 1-hour intervals. You can use a force gauge to do this or you can populate the boards at these intervals with discretes (i.e. 1206s, 0805s, etc.), invert the boards and count the components that fall off per each respective solder paste. I recommend you go at least 4 hours out but take into account whether you are printing inline or in batch mode. We are also simulating placement machine breakdown � something, of course, that rarely occurs. For post-placement tack, you can use the same inverted board test but here, you populate several boards (of each paste) and wait for 1-hour intervals before inverting and assessing component fall-off. Again, consider going 4 to 6 hours out on this, depending upon you manufacturing scheme and how long boards are likely going to sit after placement before they are reflowed. If you are using a recent vintage high-speed turret type chip-shooter, it is recommended that you perform tack tests with the machine. Users have reported some pastes lacking adequate tack resulting in components literally skidding off the pastes during placement. Worklife Solder paste worklife should also be assessed. How long can the paste remain on the stencil and still print adequately. This is a matter of printing a board with the range of component pitches you normally encounter at 1-hour intervals, leaving the paste on the stencil in the interim. Evaluate the quality of paste at these intervals examining the shape of the deposit (should be a �brick�) and watching for skips and bridges. It is incredible how yields can be improved just by assuring that the proper solder paste for the application has been qualified. This is one area you definitely do not want to take for granted. We�re all in this together. � i.e. a Chatillon DFG-2 Force gauge with motorized stand. � These stencils are readily available from most stencil suppliers including Alpha Metal

reply »

#38995

Solder Paste Evaluation | 12 January, 2006

That is the document on which I based my Pb-free solder paste evaluation, with some modifications. Here's the full Zarrow PDF:

http://www.smtinfocus.com/PDF/Evaluating_solder_paste_zarrow.pdf

Also, we're doing a Pb-free vs SnPb comparison. We are building product with various Pb-free pastes and our current SnPb paste. We will then life cycle, ICT and final test, pull parts, have joints cross sectioned, etc.

reply »

#39004

Solder Paste Evaluation | 12 January, 2006

Phil's a cool guy. I had a few email exchanges with him when I registered for his site a few years ago.

I told him up front that my company at the time wasn't planning on spending any money for services and that I was only digging for information. He answered every question I had obligingly and offered to help me out any time I had another question. He also has a sense of humor.

reply »

sarar

#39012

Solder Paste Evaluation | 12 January, 2006

I agree. Phil is a very respectable guy who knows what he's talking about, and his writings are well-done. I'm sure there are some consultants out there who are less than par, and the profession as a whole has a stigma of just rambling a bunch of meaningless jargon, but I know quite a few who have really insightful and meaningful things to say, and have helped companies who are in crisis. I think there just has to be a lot of research and care taken in choosing one. Probably the best thing to do is ask a forum like this what their experiences have been!

Sara Rice Foresite Inc. www.residues.com

reply »

#39023

Solder Paste Evaluation | 12 January, 2006

Chunkie

Why doesn't your company wash those little blue smirf coats for the people? Requiring employees to wash smocks is very poor practice, because the company looses control over the wash process, materials, or schedule. Do you test the smocks after cleaning?

reply »


URL

#39060

Solder Paste Evaluation | 13 January, 2006

You're right Dave, a GOOD company would include that in the deal. But our purchsing people get pats on backs for saving a buck or two here and there...so. It really hurts when they save 30 bucks on bulk parts versus tape and reel. Then we spend hundreds of dollars hand placing these parts. Purchsing looks good, manufacturing gets behind on the order..... ooops, this is not to the point of this thread.

reply »


URL

#39061

Solder Paste Evaluation | 13 January, 2006

Now my cows undies are in knot!

reply »

#39095

Solder Paste Evaluation | 16 January, 2006

Not to mention the addition of solder paste getting into an uncontrolled waste stream, being washed in the same appliances as someone's baby bibs, burp rags, etc.

reply »

#39469

Solder Paste Evaluation | 2 February, 2006

Sorry, I am jumping into this late - I'm a new user. Our company is looking to perform an evaluation for a new paste. We are looking at a 63/37 no clean - type 3 or 4. Our technology is currently at 0201s, .4mm pitch ICs & .5mm uBGAs.

I have been coming across a lot of paste manufactures offering to come in to our facility and perform the evaluation with us. On one hand, I would appreciate the help, but on the other, I feel that it would be a bias result.

Some of our important factors for a paste include: stencil life, wetting, ICT compatible, & use of nitrogen. Our current defects that we are concerned with switching to a new paste are solder balling, tombstoning, & BGA voiding.

If anyone has some info to share, I would appreciate it.

reply »

SMT spare parts - Qinyi Electronics

Software for SMT