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The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface
finishes was examined using the wetting balance method. The study was performed at a temperature of
260 �C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel
immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and
two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a
strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was
noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish
showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values
calculated from the wetting balance tests were as follows: the lowest h of 45� was formed on HASL LF
(EF2202 flux), the highest h of 63� was noted on the OSP finish, while on the ENIG finish, it was 58�
(EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was
performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Keywords flux, lead-free SAC305 alloy, PCB finish, solderabil-
ity, wetting balance test

1. Introduction

The SAC305 (SnAg3.0Cu0.5, wt.%) alloy belongs to the
SAC family of Pb-free solders recommended for the joining of
various components in electronic devices, particularly in
printed circuit boards (PCB). SAC alloys, compared with
traditional Sn-Pb eutectic solders, have a higher melting
temperature and better mechanical properties, enhanced
strength, improved creep, and thermal fatigue characteristics
(Ref 1-6). However, following the literature data, the imple-
mentation of SAC alloys on an industrial scale is accompanied
by some problems such as the formation of brittle intermetallic
compounds (IMCs), short creep-rupture lifetime (Ref 1, 2),
insufficient wetting (Ref 7, 8), unsatisfactory solderability, and
thus low reliability, compared to conventional Sn-Pb solders.

It is well known that among different possible solutions, the
solderability improvement can be achieved by appropriate
selection of fluxes (Ref 9-13). In such a case, the flux selected
should provide not only the effective protection of the surfaces
of both a solder and a material to be joined from oxidation
during soldering but also should assure the effective removal of

the primary oxide films always present on these surfaces (Ref
14, 15).

Another important factor affecting reliability of solder joints
in electronic devices is the PCB surface finish since it forms a
critical interface between the bare PCB and the component to be
assembled. The family of functional coatings of solder mask
over bare copper (SMOBC) type is commonly used in practice
as a PCB surface finish, which has two main functions, i.e., to
protect the exposed copper circuitry and to provide a solderable
surface when assembling (soldering) the components to the
board. Among different SMOBC finishes throughout the printed
circuit industry, there are three types most used in practice:

(1) Hot air solder leveling (HASL LF) process used for deposi-
tion of lead-free solder coating on Cu substrate. The typical
thickness of HASL LF is 1.3-35 lm. The benefits of this
kind of PBS finish are low cost coupled with good shelf
life and excellent solderability, while its disadvantages are
non-uniformity of the coating, low thermal shock resis-
tance, and the formation of brittle IMCs at the interface
during both processing and solder joints� operation.

(2) Electroless nickel immersion gold (ENIG) coating
deposited on Cu substrate. It is composed of two layers,
i.e., a gold layer of a typical thickness of 0.05-0.25 lm
over nickel containing a phosphorous layer of 1-8 lm
thickness. The main advantages of this PCB finish are
long-term experience and good knowledge of the prod-
uct behavior under different conditions, its excellent cor-
rosion resistance, solderability, and shelf life (1 year).
However, ENIG has higher production cost and this is
the only PCB finish that requires a two-stage process.
Moreover, the uncontrolled quality of that kind of finish
may decrease the solder joint reliability due to the
appearance of such structural defects as a ‘‘Black Pad.’’

(3) Organic surface protectant (OSP) on Cu substrate.
Its typical thickness is 0.2-0.5 lm. More recent OSP
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formulas are designed for lead-free assembly and they
can handle multiple heat cycles and have a 1-year shelf
life. However, difficult or impossible inspection of the
final product is the main disadvantage of the OSP finish.

In the present work, the influence of the type of flux and PCB
surface finish (HASL LF, ENIG, OSP) on the solderability of
SAC305 alloy with selected PCBs was investigated. It was
accomplished using the wetting balance method, which allows
the directmeasurements of thewetting force andwetting time and
indirect determination of the contact angle values (Ref 16 - 18).

2. Materials and Testing

In order to reproduce as closely as possible the technological
conditions of soldering in practice, the commercial Pb-free
SAC305 solder (3.1Ag, 0.8Cu, 0.04Pb, wt.%) was applied.

The solderability of SAC305 alloy was examined by the
wetting balance method on the MENISCO ST88 (Metronelec,
France) apparatus using the same procedure and under the same
conditions as in the industrial wave soldering process (Ref 19),
i.e., at a temperature of 260 �C for 3-s contact in air with a flux.

Three types of PCBs, i.e., glass-epoxy laminates with the
following surface finishes, were used: (1) HASL LF (lead-free);
(2) ENIG—composed of Ni-P layer (with 4-6 lm thickness)
and Au layer (0.1 lm thickness); and (3) OSP.

The test samples taken from the PCB were in the form of a
coupon of 4.5 mm length, 3.4 mm width, and 1.6 mm thick-
ness with two flat long surfaces. Two kinds of commercial
fluxes EF2202 and RF800 were used.

EF2202 is a VOC-free, halide-free, rosin/resin-free, low
solid no-clean flux which provides the highest activity of any
VOC-free Bellcore compliant flux for defect-free soldering. It is
formulated with a proprietary mixture of organic activators,
which deliver excellent wetting and top-side hole fill, even with
OSP-coated bare copper boards having undergone prior thermal
excursions.

RF800 provides the broadest process window for a no-clean
flux with less than 5% solid content. RF800 is designed to
provide excellent soldering results (low defects rates), even

when the surfaces to be soldered (component leads and pads)
are not highly solderable. RF800 works particularly well with
bare copper boards protected with organic or rosin/resin
coatings and with tin-lead-coated PCBs (http://alphacpmd.com/
Products/Liquid-Soldering-Flux/RF-800).

Just before the wetting balance tests, each coupon was
dipped into the flux. Excessive flux was removed by touching
the end of the coupon by filter paper and then the sample was
immersed into a bath of molten SAC305 solder. The immersion
depth and the immersion-withdrawing speed were 1 mm and
20 mm/s, respectively. For each condition, five tests were
made. During the tests, the wetting curves were automatically
recorded (force Fr as a function of time t).

After wetting balance tests, the cross sections of the examined
samples were prepared using standard metallographic proce-
dures. The interface characterization of the produced alloy/
substrate coupleswasmade using a ZEISSAxio lightmicroscope
(LM). Themicrostructural observationswere performed in bright
field (BF) and in differential interference contrast (DIC) under
magnifications of 50-15009. Additionally, the scanning electron
microscopy (SEM) observations coupled with an energy disper-
sive x-ray spectroscopy (EDS) analysis of interfaces formed in
solder/substrate couples were made using FEI Quanta 3D FEG
microscope equipped with EDAXGENESIS 4000 spectrometer.

3. Results and Discussion

Typical acquired wetting balance curves that represent the
change of measured force (Fr) versus time (t) and characterize
the dynamic wetting behavior of the SAC305 solder on PCB
substrates with different surface finishes are shown in Fig. 1
and 2 for RF800 and EF2202 flux, respectively. The results
obtained from wetting balance tests are summarized in Fig. 3,
where Fig. 3(a) presents the data obtained at the maximum
value of force Fr (resultant force measured by the balance):

Fr ¼ Fw � Fa ðEq 1Þ

This static force was achieved after specified time when an
equilibrium state during wetting tests was reached. In Fig. 3(b),
one may compare the values of wetting time t0, where t0

Fig. 1 Effect of surface finish on wetting behavior of SAC305
(260 �C, 3 s) with RF800 flux Fig. 2 Effect of surface finish on wetting behavior of SAC305

(260 �C, 3 s) with EF2202 flux

2248—Volume 22(8) August 2013 Journal of Materials Engineering and Performance

http://alphacpmd.com/Products/Liquid-Soldering-Flux/RF-800
http://alphacpmd.com/Products/Liquid-Soldering-Flux/RF-800


denotes the moment when the wetting force Fw is equal to
buoyancy force (Fa—Archimedean push) and at that time, the
measured wetting force is zero. Knowing Fr, we can extract the
wetting force Fw from the measurement by adding the
Archimedean push Fa:

Fa ¼ q � m � g ðEq 2Þ

Fw ¼ cLV � l � cos h ðEq 3Þ

cLV � l � cos h ¼ Fr þ q � m � g ðEq 4Þ

The obtained results show that the shortest wetting time t0
was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and
t0 = 0.98 s with RF800 flux), while the longest one was in the
case of the ENIG finish (t0 = 1.36 s with EF2202 flux and
t0 = 1.55 s with FR800 flux) (Fig. 1, 2). In the case of the
HASL LF finish, the wetting time reached the value of
t0 = 1.23 s with EF2202 flux and t0 = 1.17 s with RF800 flux.
The buoyancy force Fa has the value of Fa = �0.93 mN.

The measured force Fr of SAC305 with the HASL LF finish
using RF800 flux (Fig. 1) was larger (Fr = 1.50 mN) than those

Fig. 3 Comparison of the effect of surface finish type and flux type on the values of recorded force Fr (a), wetting time t0 (b), and contact
angle h (c) in SAC305/substrate couples (260 �C, 3 s)

Table 1 Contact angles formed with SAC305 solder on different PCB surface finishes (260�, 3 s)

Surface finish type
HASL LF lead-free ENIG OSP

Flux type EF 2202 RF 800 EF 2022 RF 800 EF 2022 RF 800

Contact angle value
Test 1 46� 49� 58� 57� 61� 67�
Test 2 42� 52� 59� 59� 56� 63�
Test 3 46� 49� 59� 57� 58� 61�
Test 4 46� 49� 55� 60� 56� 56�
Test 5 45� 47� 60� 61� 59� 70�

Average value 45� 49� 58� 59� 58� 63�

Fig. 4 Side view of SAC305/substrate samples after wetting balance tests (260 �C, 3 s) with RF800 flux: HASL LF (a); OSP (b)
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obtained for the OSP (Fr = 0.46 mN) and ENIG
(Fr = 0.76 mN) ones. With EF2202 flux (Fig. 2), the largest
value of the recorded force Fr was obtained also for the HASL
LF finish (Fr = 1.80 mN).

According to Fig. 3(a) and (b), the OSP finish with both
fluxes shows the smallest values of the recorded force
(Fr = 0.52 mN with RF800 flux and Fr = 1.03 mN with
EF2202 flux) as well as the wetting time t0 = 0.98 s with
RF800 flux and t0 = 0.6 s with EF2202 flux.

The contact angle values h for examined combinations of
materials in solderability tests are shown in Fig. 3(c) and are
collected in Table 1. The final contact angle values were
calculated on the basis of the data recorded in the wetting
balance tests using software supplied with the Menisco ST88
apparatus. The value h is representative of the wetting quality
and it characterizes the solderability of the materials. The
smaller the h, the better both wettability and solderability. The
lowest value of the contact angle for SAC305 is observed on
the HASL LF finish (h = 45�), while the highest one is formed
on the OSP type (h = 63�). No significant difference in the
wetting behavior and contact angles was noted between the
selected three fluxes.

Solderability quality is classified into four classes as follows
(Ref 18, 20):

Class 1: excellent quality, contact angle 0-30�;
Class 2: good quality, contact angle 31-40�;
Class 3: admissible quality, contact angle 41-55�;
Class 4: uncertain quality, contact angle 56-70�.

The results of wetting balance tests show good agreement with
visual observation of the degree of solder spreading over the
PCB surface finishes. For the HASL LF finish and RF800 flux
(Fig. 4a), the solder covers 2/3 of the test coupon surface with a
corresponding contact angle h of 45� and solderability class 3.
In the case of the OSP finish and RF800 flux, the solder covers
a much smaller area of only 1/4-1/3 of the surface (Fig. 4b),
and it forms the higher contact angle value of 63� that
corresponds to the solderability class 4.

Figure 5 shows the LM-DIC images of the microstructure of
the cross-sectioned samples after wetting balance tests. During
the 3-s immersion time, molten SAC305 solder reacts with the
substrate to form the interfaces of complex structures. Their
SEM/EDX observations confirmed the formation of the con-
tinuous IMC at the substrate/solder interface. Figure 6 presents
the comparison of the microstructure of this interfacial region
for all the types of finishes, each represented by two pictures. It
could be easily noticed that the IMC shows typical scallop-
shaped morphology. Its thickness is very similar for the OSP
and HASL LF finishes, which is about 2 lm (Fig. 6a, b, d, e),
while for ENIG, the IMC layer is thinner (�0.5 lm). Typically,
for wave soldering process, such thin intermetallic layers are
observed in the case of SnPb solder, while for lead-free ones,
they are twice thicker. Spalling of the IMC was mostly
observed in the case of the HASL LF finish (Fig. 6b, e),
regardless of the flux type used. On the other hand, the EDX
microchemical analysis showed that for both HASL LF and
OSP finishes, the intermetallic layer at the solder/side interface
is the Cu6Sn5 phase. Conversely, for the ENIG finish, the
chemical composition of the IMC layer (6.7Ag, 54.5Sn,
20.0Ni, and 18.8Cu, at.%) corresponds to the (Ni,Cu)3Sn4
phase. This phase was deduced taking into account three facts:
(1) the tin amount corresponds to the Ni3Sn4 phase, (2) no

excess of copper, which could indicate the formation of
Cu6Sn5, is detected, and (3) the IMC layer is very thin and
therefore information on local chemical composition obtained
by EDS analysis also comes from the matrix due to the beam
broadening. This result confirms the validity of the thesis that
among the two most popular intermetallics, Ni3Sn4 and
Cu6Sn5, the first one should be formed primarily if the copper
content is below 0.6 wt.%, which corresponds to 1.11 at.%
(Ref 21). Moreover, only in the case of the ENIG finish, the
enrichment in silver (up to 8.6 at.%) within (Ni,Cu)3Sn4 was
observed. According to previous studies (Ref 22), such
enrichment was noted for the Cu6Sn5 phase where the
absorption of fine Ag3Sn particles on the IMC surface took
place, particularly for the scallops of Cu6Sn5 formed by the
ripening because the Ag3Sn nanoparticles decrease the surface
energy and hinder the growth of the Cu6Sn5 phase.

Fig. 5 Cross-sectional images of SAC305/substrate samples after
wetting balance test (260 �C, 3 s): OSP with RF800 flux (a), HASL
LF with EF2202 flux (b), and ENIG with RF800 flux (c)
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During soldering with the ENIG finish, the original Ni-P
plating transformed into a multilayer region where four layers
can be distinguished (Fig. 6c, f). Two of them characterized by
the largest thickness were of similar contrast and composition.
The upper layer next to the IMC (marked with No. 1) was
composed of 18.8-19.3 P, 1.3-1.5 Sn, and 79.2-80 Ni (at.%),
while the bottom one (marked by No. 3 in Fig. 6c, f) contained
31.3 P and 68.7 Ni (at.%). Two other layers (No. 2 and No. 4 in
Fig. 6c, f, respectively) were too thin for EDS measurements as
in their case, the beam broadening and escape depth for x-rays
hinder the analysis of the individual layer. Following the
literature data, during processing, the Ni-P amorphous plating
transforms into a layer containing 17.1 at.% P and 82.9 at.% Ni
and a P-rich layer containing 28 at.% P and 72 at.% Ni, which
is identified mostly as Ni3P or Ni12P5 phase, respectively (Ref
23, 24).

4. Conclusions

The wetting balance measurements of solderability of the
SAC305 alloy in contact with PCB having three different
surface finishes (HASL LF, ENIG, and OSP) on Cu substrates
and using two types of fluxes (EF2202 and RF800) are
evidenced as follows:

(1) The type of surface finish has a strong effect on the sol-
derability with SAC305, measured in terms of both wet-
ting force Fr and wetting time t0.

(2) The highest values of Fr were recorded for the HASL
LF finish with EF2202 flux (Fr = 1.80 mN) and with
RF800 flux (Fr = 1.50 mN), while the lowest ones were
for the OSP finish with EF2202 flux (Fr = 0.88 mN)
and RF800 flux (Fr = 0.46 mN).

(3) The flux affects the wetting time t0, especially on the
ENIG and OSP finishes. The shortest wetting time of 0.6-
0.98 s was noted with the OSP finish, while the ENIG
finish showed the longest wetting time of 1.36-1.55 s.

(4) The contact angle values were comparable for both types
of fluxes for all examined types of finishes. The highest
contact angle was noted for the OSP finish showing 63�
with RF800 flux and 58� with EF2202 flux.

(5) Under conditions of this study, the admissible solder
quality (solderability class 3) was obtained only for the
HASL LF finish, while the OSP and ENIG finishes have
uncertain quality (solderability class 4).
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